![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wrecseq2 | Structured version Visualization version GIF version |
Description: Equality theorem for the well-founded recursive function generator. (Contributed by Scott Fenton, 7-Jun-2018.) |
Ref | Expression |
---|---|
wrecseq2 | ⊢ (𝐴 = 𝐵 → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑅, 𝐵, 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2771 | . 2 ⊢ 𝑅 = 𝑅 | |
2 | eqid 2771 | . 2 ⊢ 𝐹 = 𝐹 | |
3 | wrecseq123 7560 | . 2 ⊢ ((𝑅 = 𝑅 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐹) → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑅, 𝐵, 𝐹)) | |
4 | 1, 2, 3 | mp3an13 1563 | 1 ⊢ (𝐴 = 𝐵 → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑅, 𝐵, 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 wrecscwrecs 7558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-xp 5255 df-cnv 5257 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-iota 5994 df-fv 6039 df-wrecs 7559 |
This theorem is referenced by: csbrecsg 33511 |
Copyright terms: Public domain | W3C validator |