MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrdval Structured version   Visualization version   GIF version

Theorem wrdval 13494
Description: Value of the set of words over a set. (Contributed by Stefan O'Rear, 10-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
wrdval (𝑆𝑉 → Word 𝑆 = 𝑙 ∈ ℕ0 (𝑆𝑚 (0..^𝑙)))
Distinct variable groups:   𝑆,𝑙   𝑉,𝑙

Proof of Theorem wrdval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eliun 4676 . . . 4 (𝑤 𝑙 ∈ ℕ0 (𝑆𝑚 (0..^𝑙)) ↔ ∃𝑙 ∈ ℕ0 𝑤 ∈ (𝑆𝑚 (0..^𝑙)))
2 ovex 6841 . . . . . 6 (0..^𝑙) ∈ V
3 elmapg 8036 . . . . . 6 ((𝑆𝑉 ∧ (0..^𝑙) ∈ V) → (𝑤 ∈ (𝑆𝑚 (0..^𝑙)) ↔ 𝑤:(0..^𝑙)⟶𝑆))
42, 3mpan2 709 . . . . 5 (𝑆𝑉 → (𝑤 ∈ (𝑆𝑚 (0..^𝑙)) ↔ 𝑤:(0..^𝑙)⟶𝑆))
54rexbidv 3190 . . . 4 (𝑆𝑉 → (∃𝑙 ∈ ℕ0 𝑤 ∈ (𝑆𝑚 (0..^𝑙)) ↔ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆))
61, 5syl5bb 272 . . 3 (𝑆𝑉 → (𝑤 𝑙 ∈ ℕ0 (𝑆𝑚 (0..^𝑙)) ↔ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆))
76abbi2dv 2880 . 2 (𝑆𝑉 𝑙 ∈ ℕ0 (𝑆𝑚 (0..^𝑙)) = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆})
8 df-word 13485 . 2 Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆}
97, 8syl6reqr 2813 1 (𝑆𝑉 → Word 𝑆 = 𝑙 ∈ ℕ0 (𝑆𝑚 (0..^𝑙)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1632  wcel 2139  {cab 2746  wrex 3051  Vcvv 3340   ciun 4672  wf 6045  (class class class)co 6813  𝑚 cmap 8023  0cc0 10128  0cn0 11484  ..^cfzo 12659  Word cword 13477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-fv 6057  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-map 8025  df-word 13485
This theorem is referenced by:  wrdexg  13501
  Copyright terms: Public domain W3C validator