MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrdsymb0 Structured version   Visualization version   GIF version

Theorem wrdsymb0 13546
Description: A symbol at a position "outside" of a word. (Contributed by Alexander van der Vekens, 26-May-2018.) (Proof shortened by AV, 2-May-2020.)
Assertion
Ref Expression
wrdsymb0 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℤ) → ((𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼) → (𝑊𝐼) = ∅))

Proof of Theorem wrdsymb0
StepHypRef Expression
1 wrddm 13519 . . . 4 (𝑊 ∈ Word 𝑉 → dom 𝑊 = (0..^(♯‘𝑊)))
2 lencl 13531 . . . . 5 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
32nn0zd 11693 . . . 4 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ)
4 simpr 479 . . . . . . . . 9 (((♯‘𝑊) ∈ ℤ ∧ 𝐼 ∈ ℤ) → 𝐼 ∈ ℤ)
5 0zd 11602 . . . . . . . . 9 (((♯‘𝑊) ∈ ℤ ∧ 𝐼 ∈ ℤ) → 0 ∈ ℤ)
6 simpl 474 . . . . . . . . 9 (((♯‘𝑊) ∈ ℤ ∧ 𝐼 ∈ ℤ) → (♯‘𝑊) ∈ ℤ)
7 nelfzo 12690 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ 0 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ) → (𝐼 ∉ (0..^(♯‘𝑊)) ↔ (𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼)))
84, 5, 6, 7syl3anc 1477 . . . . . . . 8 (((♯‘𝑊) ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝐼 ∉ (0..^(♯‘𝑊)) ↔ (𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼)))
98biimpar 503 . . . . . . 7 ((((♯‘𝑊) ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ (𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼)) → 𝐼 ∉ (0..^(♯‘𝑊)))
10 df-nel 3037 . . . . . . 7 (𝐼 ∉ (0..^(♯‘𝑊)) ↔ ¬ 𝐼 ∈ (0..^(♯‘𝑊)))
119, 10sylib 208 . . . . . 6 ((((♯‘𝑊) ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ (𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼)) → ¬ 𝐼 ∈ (0..^(♯‘𝑊)))
12 eleq2 2829 . . . . . . 7 (dom 𝑊 = (0..^(♯‘𝑊)) → (𝐼 ∈ dom 𝑊𝐼 ∈ (0..^(♯‘𝑊))))
1312notbid 307 . . . . . 6 (dom 𝑊 = (0..^(♯‘𝑊)) → (¬ 𝐼 ∈ dom 𝑊 ↔ ¬ 𝐼 ∈ (0..^(♯‘𝑊))))
1411, 13syl5ibr 236 . . . . 5 (dom 𝑊 = (0..^(♯‘𝑊)) → ((((♯‘𝑊) ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ (𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼)) → ¬ 𝐼 ∈ dom 𝑊))
1514exp4c 637 . . . 4 (dom 𝑊 = (0..^(♯‘𝑊)) → ((♯‘𝑊) ∈ ℤ → (𝐼 ∈ ℤ → ((𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼) → ¬ 𝐼 ∈ dom 𝑊))))
161, 3, 15sylc 65 . . 3 (𝑊 ∈ Word 𝑉 → (𝐼 ∈ ℤ → ((𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼) → ¬ 𝐼 ∈ dom 𝑊)))
1716imp 444 . 2 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℤ) → ((𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼) → ¬ 𝐼 ∈ dom 𝑊))
18 ndmfv 6381 . 2 𝐼 ∈ dom 𝑊 → (𝑊𝐼) = ∅)
1917, 18syl6 35 1 ((𝑊 ∈ Word 𝑉𝐼 ∈ ℤ) → ((𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼) → (𝑊𝐼) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383   = wceq 1632  wcel 2140  wnel 3036  c0 4059   class class class wbr 4805  dom cdm 5267  cfv 6050  (class class class)co 6815  0cc0 10149   < clt 10287  cle 10288  cz 11590  ..^cfzo 12680  chash 13332  Word cword 13498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-oadd 7735  df-er 7914  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-card 8976  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-nn 11234  df-n0 11506  df-z 11591  df-uz 11901  df-fz 12541  df-fzo 12681  df-hash 13333  df-word 13506
This theorem is referenced by:  ccatsymb  13575
  Copyright terms: Public domain W3C validator