![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wrdnval | Structured version Visualization version GIF version |
Description: Words of a fixed length are mappings from a fixed half-open integer interval. (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Proof shortened by AV, 13-May-2020.) |
Ref | Expression |
---|---|
wrdnval | ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → {𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} = (𝑉 ↑𝑚 (0..^𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovexd 6825 | . . . . 5 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → (0..^𝑁) ∈ V) | |
2 | elmapg 8022 | . . . . 5 ⊢ ((𝑉 ∈ 𝑋 ∧ (0..^𝑁) ∈ V) → (𝑤 ∈ (𝑉 ↑𝑚 (0..^𝑁)) ↔ 𝑤:(0..^𝑁)⟶𝑉)) | |
3 | 1, 2 | syldan 579 | . . . 4 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → (𝑤 ∈ (𝑉 ↑𝑚 (0..^𝑁)) ↔ 𝑤:(0..^𝑁)⟶𝑉)) |
4 | iswrdi 13505 | . . . . . . . 8 ⊢ (𝑤:(0..^𝑁)⟶𝑉 → 𝑤 ∈ Word 𝑉) | |
5 | 4 | adantl 467 | . . . . . . 7 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) ∧ 𝑤:(0..^𝑁)⟶𝑉) → 𝑤 ∈ Word 𝑉) |
6 | fnfzo0hash 13436 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑤:(0..^𝑁)⟶𝑉) → (♯‘𝑤) = 𝑁) | |
7 | 6 | adantll 693 | . . . . . . 7 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) ∧ 𝑤:(0..^𝑁)⟶𝑉) → (♯‘𝑤) = 𝑁) |
8 | 5, 7 | jca 501 | . . . . . 6 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) ∧ 𝑤:(0..^𝑁)⟶𝑉) → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 𝑁)) |
9 | 8 | ex 397 | . . . . 5 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → (𝑤:(0..^𝑁)⟶𝑉 → (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 𝑁))) |
10 | wrdf 13506 | . . . . . . 7 ⊢ (𝑤 ∈ Word 𝑉 → 𝑤:(0..^(♯‘𝑤))⟶𝑉) | |
11 | oveq2 6801 | . . . . . . . 8 ⊢ ((♯‘𝑤) = 𝑁 → (0..^(♯‘𝑤)) = (0..^𝑁)) | |
12 | 11 | feq2d 6171 | . . . . . . 7 ⊢ ((♯‘𝑤) = 𝑁 → (𝑤:(0..^(♯‘𝑤))⟶𝑉 ↔ 𝑤:(0..^𝑁)⟶𝑉)) |
13 | 10, 12 | syl5ibcom 235 | . . . . . 6 ⊢ (𝑤 ∈ Word 𝑉 → ((♯‘𝑤) = 𝑁 → 𝑤:(0..^𝑁)⟶𝑉)) |
14 | 13 | imp 393 | . . . . 5 ⊢ ((𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 𝑁) → 𝑤:(0..^𝑁)⟶𝑉) |
15 | 9, 14 | impbid1 215 | . . . 4 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → (𝑤:(0..^𝑁)⟶𝑉 ↔ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 𝑁))) |
16 | 3, 15 | bitrd 268 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → (𝑤 ∈ (𝑉 ↑𝑚 (0..^𝑁)) ↔ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 𝑁))) |
17 | 16 | abbi2dv 2891 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → (𝑉 ↑𝑚 (0..^𝑁)) = {𝑤 ∣ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 𝑁)}) |
18 | df-rab 3070 | . 2 ⊢ {𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} = {𝑤 ∣ (𝑤 ∈ Word 𝑉 ∧ (♯‘𝑤) = 𝑁)} | |
19 | 17, 18 | syl6reqr 2824 | 1 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → {𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} = (𝑉 ↑𝑚 (0..^𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 {cab 2757 {crab 3065 Vcvv 3351 ⟶wf 6027 ‘cfv 6031 (class class class)co 6793 ↑𝑚 cmap 8009 0cc0 10138 ℕ0cn0 11494 ..^cfzo 12673 ♯chash 13321 Word cword 13487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-er 7896 df-map 8011 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-card 8965 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-n0 11495 df-z 11580 df-uz 11889 df-fz 12534 df-fzo 12674 df-hash 13322 df-word 13495 |
This theorem is referenced by: wrdmap 13532 hashwrdn 13533 |
Copyright terms: Public domain | W3C validator |