Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrdlen2i Structured version   Visualization version   GIF version

Theorem wrdlen2i 13732
 Description: Implications of a word of length 2. (Contributed by AV, 27-Jul-2018.) (Proof shortened by AV, 14-Oct-2018.)
Assertion
Ref Expression
wrdlen2i ((𝑆𝑉𝑇𝑉) → (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 2) ∧ ((𝑊‘0) = 𝑆 ∧ (𝑊‘1) = 𝑇))))

Proof of Theorem wrdlen2i
StepHypRef Expression
1 c0ex 10072 . . . . . . 7 0 ∈ V
2 1ex 10073 . . . . . . 7 1 ∈ V
31, 2pm3.2i 470 . . . . . 6 (0 ∈ V ∧ 1 ∈ V)
4 simpl 472 . . . . . 6 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → (𝑆𝑉𝑇𝑉))
5 0ne1 11126 . . . . . . 7 0 ≠ 1
65a1i 11 . . . . . 6 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → 0 ≠ 1)
7 fprg 6462 . . . . . 6 (((0 ∈ V ∧ 1 ∈ V) ∧ (𝑆𝑉𝑇𝑉) ∧ 0 ≠ 1) → {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇})
83, 4, 6, 7mp3an2i 1469 . . . . 5 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇})
9 fzo0to2pr 12593 . . . . . . . . . . . . . 14 (0..^2) = {0, 1}
109eqcomi 2660 . . . . . . . . . . . . 13 {0, 1} = (0..^2)
1110a1i 11 . . . . . . . . . . . 12 ((𝑆𝑉𝑇𝑉) → {0, 1} = (0..^2))
1211feq2d 6069 . . . . . . . . . . 11 ((𝑆𝑉𝑇𝑉) → ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇} ↔ {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶{𝑆, 𝑇}))
1312biimpa 500 . . . . . . . . . 10 (((𝑆𝑉𝑇𝑉) ∧ {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇}) → {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶{𝑆, 𝑇})
14 prssi 4385 . . . . . . . . . . 11 ((𝑆𝑉𝑇𝑉) → {𝑆, 𝑇} ⊆ 𝑉)
1514adantr 480 . . . . . . . . . 10 (((𝑆𝑉𝑇𝑉) ∧ {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇}) → {𝑆, 𝑇} ⊆ 𝑉)
1613, 15fssd 6095 . . . . . . . . 9 (((𝑆𝑉𝑇𝑉) ∧ {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇}) → {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶𝑉)
1716ex 449 . . . . . . . 8 ((𝑆𝑉𝑇𝑉) → ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇} → {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶𝑉))
1817adantr 480 . . . . . . 7 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇} → {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶𝑉))
1918impcom 445 . . . . . 6 (({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇} ∧ ((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩})) → {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶𝑉)
20 feq1 6064 . . . . . . . 8 (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → (𝑊:(0..^2)⟶𝑉 ↔ {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶𝑉))
2120adantl 481 . . . . . . 7 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → (𝑊:(0..^2)⟶𝑉 ↔ {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶𝑉))
2221adantl 481 . . . . . 6 (({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇} ∧ ((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩})) → (𝑊:(0..^2)⟶𝑉 ↔ {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:(0..^2)⟶𝑉))
2319, 22mpbird 247 . . . . 5 (({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}:{0, 1}⟶{𝑆, 𝑇} ∧ ((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩})) → 𝑊:(0..^2)⟶𝑉)
248, 23mpancom 704 . . . 4 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → 𝑊:(0..^2)⟶𝑉)
25 iswrdi 13341 . . . 4 (𝑊:(0..^2)⟶𝑉𝑊 ∈ Word 𝑉)
2624, 25syl 17 . . 3 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → 𝑊 ∈ Word 𝑉)
27 fveq2 6229 . . . 4 (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → (#‘𝑊) = (#‘{⟨0, 𝑆⟩, ⟨1, 𝑇⟩}))
285neii 2825 . . . . . . 7 ¬ 0 = 1
29 simpl 472 . . . . . . . 8 ((𝑆𝑉𝑇𝑉) → 𝑆𝑉)
30 opth1g 4976 . . . . . . . 8 ((0 ∈ V ∧ 𝑆𝑉) → (⟨0, 𝑆⟩ = ⟨1, 𝑇⟩ → 0 = 1))
311, 29, 30sylancr 696 . . . . . . 7 ((𝑆𝑉𝑇𝑉) → (⟨0, 𝑆⟩ = ⟨1, 𝑇⟩ → 0 = 1))
3228, 31mtoi 190 . . . . . 6 ((𝑆𝑉𝑇𝑉) → ¬ ⟨0, 𝑆⟩ = ⟨1, 𝑇⟩)
3332neqned 2830 . . . . 5 ((𝑆𝑉𝑇𝑉) → ⟨0, 𝑆⟩ ≠ ⟨1, 𝑇⟩)
34 opex 4962 . . . . . . 7 ⟨0, 𝑆⟩ ∈ V
35 opex 4962 . . . . . . 7 ⟨1, 𝑇⟩ ∈ V
3634, 35pm3.2i 470 . . . . . 6 (⟨0, 𝑆⟩ ∈ V ∧ ⟨1, 𝑇⟩ ∈ V)
37 hashprg 13220 . . . . . 6 ((⟨0, 𝑆⟩ ∈ V ∧ ⟨1, 𝑇⟩ ∈ V) → (⟨0, 𝑆⟩ ≠ ⟨1, 𝑇⟩ ↔ (#‘{⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) = 2))
3836, 37mp1i 13 . . . . 5 ((𝑆𝑉𝑇𝑉) → (⟨0, 𝑆⟩ ≠ ⟨1, 𝑇⟩ ↔ (#‘{⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) = 2))
3933, 38mpbid 222 . . . 4 ((𝑆𝑉𝑇𝑉) → (#‘{⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) = 2)
4027, 39sylan9eqr 2707 . . 3 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → (#‘𝑊) = 2)
415a1i 11 . . . . . . 7 ((𝑆𝑉𝑇𝑉) → 0 ≠ 1)
42 fvpr1g 6499 . . . . . . 7 ((0 ∈ V ∧ 𝑆𝑉 ∧ 0 ≠ 1) → ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘0) = 𝑆)
431, 29, 41, 42mp3an2i 1469 . . . . . 6 ((𝑆𝑉𝑇𝑉) → ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘0) = 𝑆)
44 simpr 476 . . . . . . 7 ((𝑆𝑉𝑇𝑉) → 𝑇𝑉)
45 fvpr2g 6500 . . . . . . 7 ((1 ∈ V ∧ 𝑇𝑉 ∧ 0 ≠ 1) → ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘1) = 𝑇)
462, 44, 41, 45mp3an2i 1469 . . . . . 6 ((𝑆𝑉𝑇𝑉) → ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘1) = 𝑇)
4743, 46jca 553 . . . . 5 ((𝑆𝑉𝑇𝑉) → (({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘0) = 𝑆 ∧ ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘1) = 𝑇))
4847adantr 480 . . . 4 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → (({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘0) = 𝑆 ∧ ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘1) = 𝑇))
49 fveq1 6228 . . . . . . 7 (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → (𝑊‘0) = ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘0))
5049eqeq1d 2653 . . . . . 6 (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → ((𝑊‘0) = 𝑆 ↔ ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘0) = 𝑆))
51 fveq1 6228 . . . . . . 7 (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → (𝑊‘1) = ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘1))
5251eqeq1d 2653 . . . . . 6 (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → ((𝑊‘1) = 𝑇 ↔ ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘1) = 𝑇))
5350, 52anbi12d 747 . . . . 5 (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → (((𝑊‘0) = 𝑆 ∧ (𝑊‘1) = 𝑇) ↔ (({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘0) = 𝑆 ∧ ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘1) = 𝑇)))
5453adantl 481 . . . 4 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → (((𝑊‘0) = 𝑆 ∧ (𝑊‘1) = 𝑇) ↔ (({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘0) = 𝑆 ∧ ({⟨0, 𝑆⟩, ⟨1, 𝑇⟩}‘1) = 𝑇)))
5548, 54mpbird 247 . . 3 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → ((𝑊‘0) = 𝑆 ∧ (𝑊‘1) = 𝑇))
5626, 40, 55jca31 556 . 2 (((𝑆𝑉𝑇𝑉) ∧ 𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩}) → ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 2) ∧ ((𝑊‘0) = 𝑆 ∧ (𝑊‘1) = 𝑇)))
5756ex 449 1 ((𝑆𝑉𝑇𝑉) → (𝑊 = {⟨0, 𝑆⟩, ⟨1, 𝑇⟩} → ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 2) ∧ ((𝑊‘0) = 𝑆 ∧ (𝑊‘1) = 𝑇))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523   ∈ wcel 2030   ≠ wne 2823  Vcvv 3231   ⊆ wss 3607  {cpr 4212  ⟨cop 4216  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690  0cc0 9974  1c1 9975  2c2 11108  ..^cfzo 12504  #chash 13157  Word cword 13323 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331 This theorem is referenced by:  wrdlen2  13734  wwlktovfo  13747
 Copyright terms: Public domain W3C validator