Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wopprc Structured version   Visualization version   GIF version

Theorem wopprc 38116
 Description: Unrelated: Wiener pairs treat proper classes symmetrically. (Contributed by Stefan O'Rear, 19-Sep-2014.)
Assertion
Ref Expression
wopprc ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ ¬ 1𝑜 ∈ {{{𝐴}, ∅}, {{𝐵}}})

Proof of Theorem wopprc
StepHypRef Expression
1 dfsn2 4327 . . . . . . . . 9 {∅} = {∅, ∅}
2 id 22 . . . . . . . . 9 ({∅} = {{𝐴}, ∅} → {∅} = {{𝐴}, ∅})
31, 2syl5reqr 2819 . . . . . . . 8 ({∅} = {{𝐴}, ∅} → {{𝐴}, ∅} = {∅, ∅})
4 snex 5036 . . . . . . . . 9 {𝐴} ∈ V
5 0ex 4921 . . . . . . . . 9 ∅ ∈ V
64, 5preqr1 4509 . . . . . . . 8 ({{𝐴}, ∅} = {∅, ∅} → {𝐴} = ∅)
73, 6syl 17 . . . . . . 7 ({∅} = {{𝐴}, ∅} → {𝐴} = ∅)
8 snprc 4387 . . . . . . 7 𝐴 ∈ V ↔ {𝐴} = ∅)
97, 8sylibr 224 . . . . . 6 ({∅} = {{𝐴}, ∅} → ¬ 𝐴 ∈ V)
108biimpi 206 . . . . . . . 8 𝐴 ∈ V → {𝐴} = ∅)
1110preq1d 4408 . . . . . . 7 𝐴 ∈ V → {{𝐴}, ∅} = {∅, ∅})
1211, 1syl6reqr 2823 . . . . . 6 𝐴 ∈ V → {∅} = {{𝐴}, ∅})
139, 12impbii 199 . . . . 5 ({∅} = {{𝐴}, ∅} ↔ ¬ 𝐴 ∈ V)
1413con2bii 346 . . . 4 (𝐴 ∈ V ↔ ¬ {∅} = {{𝐴}, ∅})
15 snprc 4387 . . . . . . 7 𝐵 ∈ V ↔ {𝐵} = ∅)
16 eqcom 2777 . . . . . . 7 ({𝐵} = ∅ ↔ ∅ = {𝐵})
1715, 16bitr2i 265 . . . . . 6 (∅ = {𝐵} ↔ ¬ 𝐵 ∈ V)
1817con2bii 346 . . . . 5 (𝐵 ∈ V ↔ ¬ ∅ = {𝐵})
195sneqr 4502 . . . . . 6 ({∅} = {{𝐵}} → ∅ = {𝐵})
20 sneq 4324 . . . . . 6 (∅ = {𝐵} → {∅} = {{𝐵}})
2119, 20impbii 199 . . . . 5 ({∅} = {{𝐵}} ↔ ∅ = {𝐵})
2218, 21xchbinxr 324 . . . 4 (𝐵 ∈ V ↔ ¬ {∅} = {{𝐵}})
2314, 22anbi12i 604 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (¬ {∅} = {{𝐴}, ∅} ∧ ¬ {∅} = {{𝐵}}))
24 pm4.56 917 . . . 4 ((¬ {∅} = {{𝐴}, ∅} ∧ ¬ {∅} = {{𝐵}}) ↔ ¬ ({∅} = {{𝐴}, ∅} ∨ {∅} = {{𝐵}}))
25 snex 5036 . . . . 5 {∅} ∈ V
2625elpr 4336 . . . 4 ({∅} ∈ {{{𝐴}, ∅}, {{𝐵}}} ↔ ({∅} = {{𝐴}, ∅} ∨ {∅} = {{𝐵}}))
2724, 26xchbinxr 324 . . 3 ((¬ {∅} = {{𝐴}, ∅} ∧ ¬ {∅} = {{𝐵}}) ↔ ¬ {∅} ∈ {{{𝐴}, ∅}, {{𝐵}}})
2823, 27bitri 264 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ ¬ {∅} ∈ {{{𝐴}, ∅}, {{𝐵}}})
29 df1o2 7725 . . 3 1𝑜 = {∅}
3029eleq1i 2840 . 2 (1𝑜 ∈ {{{𝐴}, ∅}, {{𝐵}}} ↔ {∅} ∈ {{{𝐴}, ∅}, {{𝐵}}})
3128, 30xchbinxr 324 1 ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ ¬ 1𝑜 ∈ {{{𝐴}, ∅}, {{𝐵}}})
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 196   ∧ wa 382   ∨ wo 826   = wceq 1630   ∈ wcel 2144  Vcvv 3349  ∅c0 4061  {csn 4314  {cpr 4316  1𝑜c1o 7705 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pr 5034 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-v 3351  df-dif 3724  df-un 3726  df-nul 4062  df-sn 4315  df-pr 4317  df-suc 5872  df-1o 7712 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator