![]() |
Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wnefimgd | Structured version Visualization version GIF version |
Description: The image of a mapping from A is non empty if A is non empty. (Contributed by Stanislas Polu, 9-Mar-2020.) |
Ref | Expression |
---|---|
wnefimgd.1 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
wnefimgd.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
wnefimgd | ⊢ (𝜑 → (𝐹 “ 𝐴) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3765 | . . . . 5 ⊢ 𝐴 ⊆ 𝐴 | |
2 | wnefimgd.2 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
3 | fdm 6212 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
5 | 1, 4 | syl5sseqr 3795 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ dom 𝐹) |
6 | sseqin2 3960 | . . . 4 ⊢ (𝐴 ⊆ dom 𝐹 ↔ (dom 𝐹 ∩ 𝐴) = 𝐴) | |
7 | 5, 6 | sylib 208 | . . 3 ⊢ (𝜑 → (dom 𝐹 ∩ 𝐴) = 𝐴) |
8 | wnefimgd.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
9 | 7, 8 | eqnetrd 2999 | . 2 ⊢ (𝜑 → (dom 𝐹 ∩ 𝐴) ≠ ∅) |
10 | imadisj 5642 | . . 3 ⊢ ((𝐹 “ 𝐴) = ∅ ↔ (dom 𝐹 ∩ 𝐴) = ∅) | |
11 | 10 | necon3bii 2984 | . 2 ⊢ ((𝐹 “ 𝐴) ≠ ∅ ↔ (dom 𝐹 ∩ 𝐴) ≠ ∅) |
12 | 9, 11 | sylibr 224 | 1 ⊢ (𝜑 → (𝐹 “ 𝐴) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ≠ wne 2932 ∩ cin 3714 ⊆ wss 3715 ∅c0 4058 dom cdm 5266 “ cima 5269 ⟶wf 6045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-xp 5272 df-cnv 5274 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-fn 6052 df-f 6053 |
This theorem is referenced by: imo72b2lem0 38967 imo72b2lem2 38969 imo72b2lem1 38973 imo72b2 38977 |
Copyright terms: Public domain | W3C validator |