![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlkvtxiedg | Structured version Visualization version GIF version |
Description: The vertices of a walk are connected by indexed edges. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 2-Jan-2021.) (Proof shortened by AV, 4-Apr-2021.) |
Ref | Expression |
---|---|
wlkvtxeledg.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
wlkvtxiedg | ⊢ (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^(♯‘𝐹))∃𝑒 ∈ ran 𝐼{(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkvtxeledg.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
2 | 1 | wlkvtxeledg 26754 | . 2 ⊢ (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) |
3 | fvex 6342 | . . . . . . . . 9 ⊢ (𝑃‘𝑘) ∈ V | |
4 | 3 | prnz 4445 | . . . . . . . 8 ⊢ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ≠ ∅ |
5 | ssn0 4120 | . . . . . . . 8 ⊢ (({(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ≠ ∅) → (𝐼‘(𝐹‘𝑘)) ≠ ∅) | |
6 | 4, 5 | mpan2 671 | . . . . . . 7 ⊢ ({(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)) → (𝐼‘(𝐹‘𝑘)) ≠ ∅) |
7 | 6 | adantl 467 | . . . . . 6 ⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → (𝐼‘(𝐹‘𝑘)) ≠ ∅) |
8 | fvn0fvelrn 6573 | . . . . . 6 ⊢ ((𝐼‘(𝐹‘𝑘)) ≠ ∅ → (𝐼‘(𝐹‘𝑘)) ∈ ran 𝐼) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → (𝐼‘(𝐹‘𝑘)) ∈ ran 𝐼) |
10 | sseq2 3776 | . . . . . 6 ⊢ (𝑒 = (𝐼‘(𝐹‘𝑘)) → ({(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒 ↔ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) | |
11 | 10 | adantl 467 | . . . . 5 ⊢ ((((𝐹(Walks‘𝐺)𝑃 ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ∧ 𝑒 = (𝐼‘(𝐹‘𝑘))) → ({(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒 ↔ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) |
12 | simpr 471 | . . . . 5 ⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) | |
13 | 9, 11, 12 | rspcedvd 3467 | . . . 4 ⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → ∃𝑒 ∈ ran 𝐼{(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒) |
14 | 13 | ex 397 | . . 3 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ({(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)) → ∃𝑒 ∈ ran 𝐼{(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒)) |
15 | 14 | ralimdva 3111 | . 2 ⊢ (𝐹(Walks‘𝐺)𝑃 → (∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)) → ∀𝑘 ∈ (0..^(♯‘𝐹))∃𝑒 ∈ ran 𝐼{(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒)) |
16 | 2, 15 | mpd 15 | 1 ⊢ (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^(♯‘𝐹))∃𝑒 ∈ ran 𝐼{(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ∀wral 3061 ∃wrex 3062 ⊆ wss 3723 ∅c0 4063 {cpr 4318 class class class wbr 4786 ran crn 5250 ‘cfv 6031 (class class class)co 6793 0cc0 10138 1c1 10139 + caddc 10141 ..^cfzo 12673 ♯chash 13321 iEdgciedg 26096 Walkscwlks 26727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-ifp 1050 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-er 7896 df-map 8011 df-pm 8012 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-card 8965 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-n0 11495 df-z 11580 df-uz 11889 df-fz 12534 df-fzo 12674 df-hash 13322 df-word 13495 df-wlks 26730 |
This theorem is referenced by: wlkvtxedg 26775 wlkonl1iedg 26796 |
Copyright terms: Public domain | W3C validator |