![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlkson | Structured version Visualization version GIF version |
Description: The set of walks between two vertices. (Contributed by Alexander van der Vekens, 12-Dec-2017.) (Revised by AV, 30-Dec-2020.) (Revised by AV, 22-Mar-2021.) |
Ref | Expression |
---|---|
wlkson.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
wlkson | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(WalksOn‘𝐺)𝐵) = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkson.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | 1vgrex 25927 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ V) |
3 | 2 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐺 ∈ V) |
4 | simpl 472 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
5 | 4, 1 | syl6eleq 2740 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ (Vtx‘𝐺)) |
6 | simpr 476 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) | |
7 | 6, 1 | syl6eleq 2740 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ (Vtx‘𝐺)) |
8 | wksv 26571 | . . . 4 ⊢ {〈𝑓, 𝑝〉 ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V | |
9 | 8 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → {〈𝑓, 𝑝〉 ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V) |
10 | simpr 476 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝑓(Walks‘𝐺)𝑝) → 𝑓(Walks‘𝐺)𝑝) | |
11 | eqeq2 2662 | . . . 4 ⊢ (𝑎 = 𝐴 → ((𝑝‘0) = 𝑎 ↔ (𝑝‘0) = 𝐴)) | |
12 | eqeq2 2662 | . . . 4 ⊢ (𝑏 = 𝐵 → ((𝑝‘(#‘𝑓)) = 𝑏 ↔ (𝑝‘(#‘𝑓)) = 𝐵)) | |
13 | 11, 12 | bi2anan9 935 | . . 3 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ↔ ((𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵))) |
14 | biidd 252 | . . 3 ⊢ (𝑔 = 𝐺 → (((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ↔ ((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏))) | |
15 | df-wlkson 26552 | . . . 4 ⊢ WalksOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)})) | |
16 | eqid 2651 | . . . . . 6 ⊢ (Vtx‘𝑔) = (Vtx‘𝑔) | |
17 | 3anass 1059 | . . . . . . . 8 ⊢ ((𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ↔ (𝑓(Walks‘𝑔)𝑝 ∧ ((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏))) | |
18 | ancom 465 | . . . . . . . 8 ⊢ ((𝑓(Walks‘𝑔)𝑝 ∧ ((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)) ↔ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ∧ 𝑓(Walks‘𝑔)𝑝)) | |
19 | 17, 18 | bitri 264 | . . . . . . 7 ⊢ ((𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ↔ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ∧ 𝑓(Walks‘𝑔)𝑝)) |
20 | 19 | opabbii 4750 | . . . . . 6 ⊢ {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)} = {〈𝑓, 𝑝〉 ∣ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ∧ 𝑓(Walks‘𝑔)𝑝)} |
21 | 16, 16, 20 | mpt2eq123i 6760 | . . . . 5 ⊢ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)}) = (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ∧ 𝑓(Walks‘𝑔)𝑝)}) |
22 | 21 | mpteq2i 4774 | . . . 4 ⊢ (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏)})) = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ∧ 𝑓(Walks‘𝑔)𝑝)})) |
23 | 15, 22 | eqtri 2673 | . . 3 ⊢ WalksOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (((𝑝‘0) = 𝑎 ∧ (𝑝‘(#‘𝑓)) = 𝑏) ∧ 𝑓(Walks‘𝑔)𝑝)})) |
24 | 3, 5, 7, 9, 10, 13, 14, 23 | mptmpt2opabbrd 7293 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(WalksOn‘𝐺)𝐵) = {〈𝑓, 𝑝〉 ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵) ∧ 𝑓(Walks‘𝐺)𝑝)}) |
25 | ancom 465 | . . . 4 ⊢ ((((𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵) ∧ 𝑓(Walks‘𝐺)𝑝) ↔ (𝑓(Walks‘𝐺)𝑝 ∧ ((𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵))) | |
26 | 3anass 1059 | . . . 4 ⊢ ((𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵) ↔ (𝑓(Walks‘𝐺)𝑝 ∧ ((𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵))) | |
27 | 25, 26 | bitr4i 267 | . . 3 ⊢ ((((𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵) ∧ 𝑓(Walks‘𝐺)𝑝) ↔ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵)) |
28 | 27 | opabbii 4750 | . 2 ⊢ {〈𝑓, 𝑝〉 ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵) ∧ 𝑓(Walks‘𝐺)𝑝)} = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵)} |
29 | 24, 28 | syl6eq 2701 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(WalksOn‘𝐺)𝐵) = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 Vcvv 3231 class class class wbr 4685 {copab 4745 ↦ cmpt 4762 ‘cfv 5926 (class class class)co 6690 ↦ cmpt2 6692 0cc0 9974 #chash 13157 Vtxcvtx 25919 Walkscwlks 26548 WalksOncwlkson 26549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-ifp 1033 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-er 7787 df-map 7901 df-pm 7902 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-fzo 12505 df-hash 13158 df-word 13331 df-wlks 26551 df-wlkson 26552 |
This theorem is referenced by: iswlkon 26609 wlkonprop 26610 |
Copyright terms: Public domain | W3C validator |