Step | Hyp | Ref
| Expression |
1 | | wlkres.h |
. . 3
⊢ 𝐻 = (𝐹 ↾ (0..^𝑁)) |
2 | | wlkres.d |
. . . . . . . 8
⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
3 | | wlkres.i |
. . . . . . . . 9
⊢ 𝐼 = (iEdg‘𝐺) |
4 | 3 | wlkf 26566 |
. . . . . . . 8
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
5 | | wrdfn 13351 |
. . . . . . . 8
⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹 Fn (0..^(#‘𝐹))) |
6 | 2, 4, 5 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → 𝐹 Fn (0..^(#‘𝐹))) |
7 | | wlkres.n |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ (0..^(#‘𝐹))) |
8 | | elfzouz2 12523 |
. . . . . . . 8
⊢ (𝑁 ∈ (0..^(#‘𝐹)) → (#‘𝐹) ∈
(ℤ≥‘𝑁)) |
9 | | fzoss2 12535 |
. . . . . . . 8
⊢
((#‘𝐹) ∈
(ℤ≥‘𝑁) → (0..^𝑁) ⊆ (0..^(#‘𝐹))) |
10 | 7, 8, 9 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → (0..^𝑁) ⊆ (0..^(#‘𝐹))) |
11 | | fnssres 6042 |
. . . . . . 7
⊢ ((𝐹 Fn (0..^(#‘𝐹)) ∧ (0..^𝑁) ⊆ (0..^(#‘𝐹))) → (𝐹 ↾ (0..^𝑁)) Fn (0..^𝑁)) |
12 | 6, 10, 11 | syl2anc 694 |
. . . . . 6
⊢ (𝜑 → (𝐹 ↾ (0..^𝑁)) Fn (0..^𝑁)) |
13 | | simpr 476 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → 𝑥 ∈ (0..^𝑁)) |
14 | | fveq2 6229 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑥 → (𝐹‘𝑖) = (𝐹‘𝑥)) |
15 | 14 | eqeq1d 2653 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑥 → ((𝐹‘𝑖) = ((𝐹 ↾ (0..^𝑁))‘𝑥) ↔ (𝐹‘𝑥) = ((𝐹 ↾ (0..^𝑁))‘𝑥))) |
16 | 15 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) ∧ 𝑖 = 𝑥) → ((𝐹‘𝑖) = ((𝐹 ↾ (0..^𝑁))‘𝑥) ↔ (𝐹‘𝑥) = ((𝐹 ↾ (0..^𝑁))‘𝑥))) |
17 | | fvres 6245 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (0..^𝑁) → ((𝐹 ↾ (0..^𝑁))‘𝑥) = (𝐹‘𝑥)) |
18 | 17 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → ((𝐹 ↾ (0..^𝑁))‘𝑥) = (𝐹‘𝑥)) |
19 | 18 | eqcomd 2657 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → (𝐹‘𝑥) = ((𝐹 ↾ (0..^𝑁))‘𝑥)) |
20 | 13, 16, 19 | rspcedvd 3348 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → ∃𝑖 ∈ (0..^𝑁)(𝐹‘𝑖) = ((𝐹 ↾ (0..^𝑁))‘𝑥)) |
21 | 6 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → 𝐹 Fn (0..^(#‘𝐹))) |
22 | 10 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → (0..^𝑁) ⊆ (0..^(#‘𝐹))) |
23 | 21, 22 | fvelimabd 6293 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → (((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ (𝐹 “ (0..^𝑁)) ↔ ∃𝑖 ∈ (0..^𝑁)(𝐹‘𝑖) = ((𝐹 ↾ (0..^𝑁))‘𝑥))) |
24 | 20, 23 | mpbird 247 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → ((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ (𝐹 “ (0..^𝑁))) |
25 | 2, 4 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 ∈ Word dom 𝐼) |
26 | | wrdf 13342 |
. . . . . . . . . . . . . 14
⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹:(0..^(#‘𝐹))⟶dom 𝐼) |
27 | | ffvelrn 6397 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹:(0..^(#‘𝐹))⟶dom 𝐼 ∧ 𝑥 ∈ (0..^(#‘𝐹))) → (𝐹‘𝑥) ∈ dom 𝐼) |
28 | 27 | expcom 450 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (0..^(#‘𝐹)) → (𝐹:(0..^(#‘𝐹))⟶dom 𝐼 → (𝐹‘𝑥) ∈ dom 𝐼)) |
29 | 10 | sselda 3636 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → 𝑥 ∈ (0..^(#‘𝐹))) |
30 | 28, 29 | syl11 33 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:(0..^(#‘𝐹))⟶dom 𝐼 → ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → (𝐹‘𝑥) ∈ dom 𝐼)) |
31 | 30 | expd 451 |
. . . . . . . . . . . . . 14
⊢ (𝐹:(0..^(#‘𝐹))⟶dom 𝐼 → (𝜑 → (𝑥 ∈ (0..^𝑁) → (𝐹‘𝑥) ∈ dom 𝐼))) |
32 | 26, 31 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ Word dom 𝐼 → (𝜑 → (𝑥 ∈ (0..^𝑁) → (𝐹‘𝑥) ∈ dom 𝐼))) |
33 | 25, 32 | mpcom 38 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ (0..^𝑁) → (𝐹‘𝑥) ∈ dom 𝐼)) |
34 | 33 | imp 444 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → (𝐹‘𝑥) ∈ dom 𝐼) |
35 | 18, 34 | eqeltrd 2730 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → ((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom 𝐼) |
36 | 24, 35 | elind 3831 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → ((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼)) |
37 | | dmres 5454 |
. . . . . . . . 9
⊢ dom
(𝐼 ↾ (𝐹 “ (0..^𝑁))) = ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼) |
38 | 36, 37 | syl6eleqr 2741 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → ((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
39 | | wlkres.e |
. . . . . . . . . . 11
⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
40 | 39 | dmeqd 5358 |
. . . . . . . . . 10
⊢ (𝜑 → dom (iEdg‘𝑆) = dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
41 | 40 | eleq2d 2716 |
. . . . . . . . 9
⊢ (𝜑 → (((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom (iEdg‘𝑆) ↔ ((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom (𝐼 ↾ (𝐹 “ (0..^𝑁))))) |
42 | 41 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → (((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom (iEdg‘𝑆) ↔ ((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom (𝐼 ↾ (𝐹 “ (0..^𝑁))))) |
43 | 38, 42 | mpbird 247 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → ((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom (iEdg‘𝑆)) |
44 | 43 | ralrimiva 2995 |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ (0..^𝑁)((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom (iEdg‘𝑆)) |
45 | | ffnfv 6428 |
. . . . . 6
⊢ ((𝐹 ↾ (0..^𝑁)):(0..^𝑁)⟶dom (iEdg‘𝑆) ↔ ((𝐹 ↾ (0..^𝑁)) Fn (0..^𝑁) ∧ ∀𝑥 ∈ (0..^𝑁)((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom (iEdg‘𝑆))) |
46 | 12, 44, 45 | sylanbrc 699 |
. . . . 5
⊢ (𝜑 → (𝐹 ↾ (0..^𝑁)):(0..^𝑁)⟶dom (iEdg‘𝑆)) |
47 | | fzossfz 12527 |
. . . . . . . . 9
⊢
(0..^(#‘𝐹))
⊆ (0...(#‘𝐹)) |
48 | 47, 7 | sseldi 3634 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ (0...(#‘𝐹))) |
49 | | wlkreslem0 26621 |
. . . . . . . 8
⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑁 ∈ (0...(#‘𝐹))) → (#‘(𝐹 ↾ (0..^𝑁))) = 𝑁) |
50 | 25, 48, 49 | syl2anc 694 |
. . . . . . 7
⊢ (𝜑 → (#‘(𝐹 ↾ (0..^𝑁))) = 𝑁) |
51 | 50 | oveq2d 6706 |
. . . . . 6
⊢ (𝜑 → (0..^(#‘(𝐹 ↾ (0..^𝑁)))) = (0..^𝑁)) |
52 | 51 | feq2d 6069 |
. . . . 5
⊢ (𝜑 → ((𝐹 ↾ (0..^𝑁)):(0..^(#‘(𝐹 ↾ (0..^𝑁))))⟶dom (iEdg‘𝑆) ↔ (𝐹 ↾ (0..^𝑁)):(0..^𝑁)⟶dom (iEdg‘𝑆))) |
53 | 46, 52 | mpbird 247 |
. . . 4
⊢ (𝜑 → (𝐹 ↾ (0..^𝑁)):(0..^(#‘(𝐹 ↾ (0..^𝑁))))⟶dom (iEdg‘𝑆)) |
54 | | iswrdb 13343 |
. . . 4
⊢ ((𝐹 ↾ (0..^𝑁)) ∈ Word dom (iEdg‘𝑆) ↔ (𝐹 ↾ (0..^𝑁)):(0..^(#‘(𝐹 ↾ (0..^𝑁))))⟶dom (iEdg‘𝑆)) |
55 | 53, 54 | sylibr 224 |
. . 3
⊢ (𝜑 → (𝐹 ↾ (0..^𝑁)) ∈ Word dom (iEdg‘𝑆)) |
56 | 1, 55 | syl5eqel 2734 |
. 2
⊢ (𝜑 → 𝐻 ∈ Word dom (iEdg‘𝑆)) |
57 | | wlkres.v |
. . . . . . . 8
⊢ 𝑉 = (Vtx‘𝐺) |
58 | 57 | wlkp 26568 |
. . . . . . 7
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(#‘𝐹))⟶𝑉) |
59 | 2, 58 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑃:(0...(#‘𝐹))⟶𝑉) |
60 | | wlkres.s |
. . . . . . 7
⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
61 | 60 | feq3d 6070 |
. . . . . 6
⊢ (𝜑 → (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝑆) ↔ 𝑃:(0...(#‘𝐹))⟶𝑉)) |
62 | 59, 61 | mpbird 247 |
. . . . 5
⊢ (𝜑 → 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝑆)) |
63 | | elfzuz3 12377 |
. . . . . 6
⊢ (𝑁 ∈ (0...(#‘𝐹)) → (#‘𝐹) ∈
(ℤ≥‘𝑁)) |
64 | | fzss2 12419 |
. . . . . 6
⊢
((#‘𝐹) ∈
(ℤ≥‘𝑁) → (0...𝑁) ⊆ (0...(#‘𝐹))) |
65 | 48, 63, 64 | 3syl 18 |
. . . . 5
⊢ (𝜑 → (0...𝑁) ⊆ (0...(#‘𝐹))) |
66 | 62, 65 | fssresd 6109 |
. . . 4
⊢ (𝜑 → (𝑃 ↾ (0...𝑁)):(0...𝑁)⟶(Vtx‘𝑆)) |
67 | 1 | fveq2i 6232 |
. . . . . . 7
⊢
(#‘𝐻) =
(#‘(𝐹 ↾
(0..^𝑁))) |
68 | 67, 50 | syl5eq 2697 |
. . . . . 6
⊢ (𝜑 → (#‘𝐻) = 𝑁) |
69 | 68 | oveq2d 6706 |
. . . . 5
⊢ (𝜑 → (0...(#‘𝐻)) = (0...𝑁)) |
70 | 69 | feq2d 6069 |
. . . 4
⊢ (𝜑 → ((𝑃 ↾ (0...𝑁)):(0...(#‘𝐻))⟶(Vtx‘𝑆) ↔ (𝑃 ↾ (0...𝑁)):(0...𝑁)⟶(Vtx‘𝑆))) |
71 | 66, 70 | mpbird 247 |
. . 3
⊢ (𝜑 → (𝑃 ↾ (0...𝑁)):(0...(#‘𝐻))⟶(Vtx‘𝑆)) |
72 | | wlkres.q |
. . . 4
⊢ 𝑄 = (𝑃 ↾ (0...𝑁)) |
73 | 72 | feq1i 6074 |
. . 3
⊢ (𝑄:(0...(#‘𝐻))⟶(Vtx‘𝑆) ↔ (𝑃 ↾ (0...𝑁)):(0...(#‘𝐻))⟶(Vtx‘𝑆)) |
74 | 71, 73 | sylibr 224 |
. 2
⊢ (𝜑 → 𝑄:(0...(#‘𝐻))⟶(Vtx‘𝑆)) |
75 | | wlkv 26564 |
. . . . . . 7
⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) |
76 | 57, 3 | iswlk 26562 |
. . . . . . . 8
⊢ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) |
77 | 76 | biimpd 219 |
. . . . . . 7
⊢ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) |
78 | 75, 77 | mpcom 38 |
. . . . . 6
⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))))) |
79 | 2, 78 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))))) |
80 | 79 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(#‘𝐻))) → (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))))) |
81 | 68 | oveq2d 6706 |
. . . . . . . . . . 11
⊢ (𝜑 → (0..^(#‘𝐻)) = (0..^𝑁)) |
82 | 81 | eleq2d 2716 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ (0..^(#‘𝐻)) ↔ 𝑥 ∈ (0..^𝑁))) |
83 | 72 | fveq1i 6230 |
. . . . . . . . . . . . 13
⊢ (𝑄‘𝑥) = ((𝑃 ↾ (0...𝑁))‘𝑥) |
84 | | fzossfz 12527 |
. . . . . . . . . . . . . . . 16
⊢
(0..^𝑁) ⊆
(0...𝑁) |
85 | 84 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (0..^𝑁) ⊆ (0...𝑁)) |
86 | 85 | sselda 3636 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → 𝑥 ∈ (0...𝑁)) |
87 | 86 | fvresd 6246 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑃 ↾ (0...𝑁))‘𝑥) = (𝑃‘𝑥)) |
88 | 83, 87 | syl5req 2698 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → (𝑃‘𝑥) = (𝑄‘𝑥)) |
89 | 72 | fveq1i 6230 |
. . . . . . . . . . . . 13
⊢ (𝑄‘(𝑥 + 1)) = ((𝑃 ↾ (0...𝑁))‘(𝑥 + 1)) |
90 | | fzofzp1 12605 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (0..^𝑁) → (𝑥 + 1) ∈ (0...𝑁)) |
91 | 90 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → (𝑥 + 1) ∈ (0...𝑁)) |
92 | 91 | fvresd 6246 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑃 ↾ (0...𝑁))‘(𝑥 + 1)) = (𝑃‘(𝑥 + 1))) |
93 | 89, 92 | syl5req 2698 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) |
94 | 88, 93 | jca 553 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1)))) |
95 | 94 | ex 449 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ (0..^𝑁) → ((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))))) |
96 | 82, 95 | sylbid 230 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (0..^(#‘𝐻)) → ((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))))) |
97 | 96 | imp 444 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(#‘𝐻))) → ((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1)))) |
98 | 25 | ancli 573 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝜑 ∧ 𝐹 ∈ Word dom 𝐼)) |
99 | 26 | ffund 6087 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 ∈ Word dom 𝐼 → Fun 𝐹) |
100 | 99 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝐹 ∈ Word dom 𝐼) → Fun 𝐹) |
101 | 100 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐹 ∈ Word dom 𝐼) ∧ 𝑥 ∈ (0..^𝑁)) → Fun 𝐹) |
102 | | fdm 6089 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹:(0..^(#‘𝐹))⟶dom 𝐼 → dom 𝐹 = (0..^(#‘𝐹))) |
103 | | sseq2 3660 |
. . . . . . . . . . . . . . . . . . 19
⊢ (dom
𝐹 = (0..^(#‘𝐹)) → ((0..^𝑁) ⊆ dom 𝐹 ↔ (0..^𝑁) ⊆ (0..^(#‘𝐹)))) |
104 | 10, 103 | syl5ibr 236 |
. . . . . . . . . . . . . . . . . 18
⊢ (dom
𝐹 = (0..^(#‘𝐹)) → (𝜑 → (0..^𝑁) ⊆ dom 𝐹)) |
105 | 26, 102, 104 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 ∈ Word dom 𝐼 → (𝜑 → (0..^𝑁) ⊆ dom 𝐹)) |
106 | 105 | impcom 445 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝐹 ∈ Word dom 𝐼) → (0..^𝑁) ⊆ dom 𝐹) |
107 | 106 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐹 ∈ Word dom 𝐼) ∧ 𝑥 ∈ (0..^𝑁)) → (0..^𝑁) ⊆ dom 𝐹) |
108 | | simpr 476 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐹 ∈ Word dom 𝐼) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑥 ∈ (0..^𝑁)) |
109 | 101, 107,
108 | resfvresima 6534 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐹 ∈ Word dom 𝐼) ∧ 𝑥 ∈ (0..^𝑁)) → ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥)) = (𝐼‘(𝐹‘𝑥))) |
110 | 98, 109 | sylan 487 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥)) = (𝐼‘(𝐹‘𝑥))) |
111 | 110 | eqcomd 2657 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^𝑁)) → (𝐼‘(𝐹‘𝑥)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥))) |
112 | 111 | ex 449 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ (0..^𝑁) → (𝐼‘(𝐹‘𝑥)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥)))) |
113 | 82, 112 | sylbid 230 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ (0..^(#‘𝐻)) → (𝐼‘(𝐹‘𝑥)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥)))) |
114 | 113 | imp 444 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(#‘𝐻))) → (𝐼‘(𝐹‘𝑥)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥))) |
115 | 39 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(#‘𝐻))) → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
116 | 1 | fveq1i 6230 |
. . . . . . . . . . 11
⊢ (𝐻‘𝑥) = ((𝐹 ↾ (0..^𝑁))‘𝑥) |
117 | 116 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(#‘𝐻))) → (𝐻‘𝑥) = ((𝐹 ↾ (0..^𝑁))‘𝑥)) |
118 | 115, 117 | fveq12d 6235 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(#‘𝐻))) → ((iEdg‘𝑆)‘(𝐻‘𝑥)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥))) |
119 | 114, 118 | eqtr4d 2688 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(#‘𝐻))) → (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥))) |
120 | 97, 119 | jca 553 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(#‘𝐻))) → (((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥)))) |
121 | 7, 8 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (#‘𝐹) ∈ (ℤ≥‘𝑁)) |
122 | 1 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐻 = (𝐹 ↾ (0..^𝑁))) |
123 | 122 | fveq2d 6233 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (#‘𝐻) = (#‘(𝐹 ↾ (0..^𝑁)))) |
124 | 123, 50 | eqtrd 2685 |
. . . . . . . . . . . 12
⊢ (𝜑 → (#‘𝐻) = 𝑁) |
125 | 124 | fveq2d 6233 |
. . . . . . . . . . 11
⊢ (𝜑 →
(ℤ≥‘(#‘𝐻)) = (ℤ≥‘𝑁)) |
126 | 121, 125 | eleqtrrd 2733 |
. . . . . . . . . 10
⊢ (𝜑 → (#‘𝐹) ∈
(ℤ≥‘(#‘𝐻))) |
127 | | fzoss2 12535 |
. . . . . . . . . 10
⊢
((#‘𝐹) ∈
(ℤ≥‘(#‘𝐻)) → (0..^(#‘𝐻)) ⊆ (0..^(#‘𝐹))) |
128 | 126, 127 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (0..^(#‘𝐻)) ⊆ (0..^(#‘𝐹))) |
129 | 128 | sselda 3636 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(#‘𝐻))) → 𝑥 ∈ (0..^(#‘𝐹))) |
130 | | wkslem1 26559 |
. . . . . . . . 9
⊢ (𝑘 = 𝑥 → (if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ↔ if-((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)), (𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥)}, {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹‘𝑥))))) |
131 | 130 | rspcv 3336 |
. . . . . . . 8
⊢ (𝑥 ∈ (0..^(#‘𝐹)) → (∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → if-((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)), (𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥)}, {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹‘𝑥))))) |
132 | 129, 131 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(#‘𝐻))) → (∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → if-((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)), (𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥)}, {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹‘𝑥))))) |
133 | | eqeq12 2664 |
. . . . . . . . . 10
⊢ (((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) → ((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)) ↔ (𝑄‘𝑥) = (𝑄‘(𝑥 + 1)))) |
134 | 133 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥))) → ((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)) ↔ (𝑄‘𝑥) = (𝑄‘(𝑥 + 1)))) |
135 | | simpr 476 |
. . . . . . . . . 10
⊢ ((((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥))) → (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥))) |
136 | | sneq 4220 |
. . . . . . . . . . . 12
⊢ ((𝑃‘𝑥) = (𝑄‘𝑥) → {(𝑃‘𝑥)} = {(𝑄‘𝑥)}) |
137 | 136 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) → {(𝑃‘𝑥)} = {(𝑄‘𝑥)}) |
138 | 137 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥))) → {(𝑃‘𝑥)} = {(𝑄‘𝑥)}) |
139 | 135, 138 | eqeq12d 2666 |
. . . . . . . . 9
⊢ ((((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥))) → ((𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥)} ↔ ((iEdg‘𝑆)‘(𝐻‘𝑥)) = {(𝑄‘𝑥)})) |
140 | | preq12 4302 |
. . . . . . . . . . 11
⊢ (((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) → {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} = {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))}) |
141 | 140 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥))) → {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} = {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))}) |
142 | 141, 135 | sseq12d 3667 |
. . . . . . . . 9
⊢ ((((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥))) → ({(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹‘𝑥)) ↔ {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑥)))) |
143 | 134, 139,
142 | ifpbi123d 1047 |
. . . . . . . 8
⊢ ((((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥))) → (if-((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)), (𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥)}, {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹‘𝑥))) ↔ if-((𝑄‘𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑥)) = {(𝑄‘𝑥)}, {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑥))))) |
144 | 143 | biimpd 219 |
. . . . . . 7
⊢ ((((𝑃‘𝑥) = (𝑄‘𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹‘𝑥)) = ((iEdg‘𝑆)‘(𝐻‘𝑥))) → (if-((𝑃‘𝑥) = (𝑃‘(𝑥 + 1)), (𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥)}, {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹‘𝑥))) → if-((𝑄‘𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑥)) = {(𝑄‘𝑥)}, {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑥))))) |
145 | 120, 132,
144 | sylsyld 61 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(#‘𝐻))) → (∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → if-((𝑄‘𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑥)) = {(𝑄‘𝑥)}, {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑥))))) |
146 | 145 | com12 32 |
. . . . 5
⊢
(∀𝑘 ∈
(0..^(#‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → ((𝜑 ∧ 𝑥 ∈ (0..^(#‘𝐻))) → if-((𝑄‘𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑥)) = {(𝑄‘𝑥)}, {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑥))))) |
147 | 146 | 3ad2ant3 1104 |
. . . 4
⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) → ((𝜑 ∧ 𝑥 ∈ (0..^(#‘𝐻))) → if-((𝑄‘𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑥)) = {(𝑄‘𝑥)}, {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑥))))) |
148 | 80, 147 | mpcom 38 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (0..^(#‘𝐻))) → if-((𝑄‘𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑥)) = {(𝑄‘𝑥)}, {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑥)))) |
149 | 148 | ralrimiva 2995 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ (0..^(#‘𝐻))if-((𝑄‘𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑥)) = {(𝑄‘𝑥)}, {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑥)))) |
150 | 57, 3, 2, 7, 60, 39, 1, 72 | wlkreslem 26622 |
. . 3
⊢ (𝜑 → (𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V)) |
151 | | eqid 2651 |
. . . 4
⊢
(Vtx‘𝑆) =
(Vtx‘𝑆) |
152 | | eqid 2651 |
. . . 4
⊢
(iEdg‘𝑆) =
(iEdg‘𝑆) |
153 | 151, 152 | iswlk 26562 |
. . 3
⊢ ((𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V) → (𝐻(Walks‘𝑆)𝑄 ↔ (𝐻 ∈ Word dom (iEdg‘𝑆) ∧ 𝑄:(0...(#‘𝐻))⟶(Vtx‘𝑆) ∧ ∀𝑥 ∈ (0..^(#‘𝐻))if-((𝑄‘𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑥)) = {(𝑄‘𝑥)}, {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑥)))))) |
154 | 150, 153 | syl 17 |
. 2
⊢ (𝜑 → (𝐻(Walks‘𝑆)𝑄 ↔ (𝐻 ∈ Word dom (iEdg‘𝑆) ∧ 𝑄:(0...(#‘𝐻))⟶(Vtx‘𝑆) ∧ ∀𝑥 ∈ (0..^(#‘𝐻))if-((𝑄‘𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻‘𝑥)) = {(𝑄‘𝑥)}, {(𝑄‘𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑥)))))) |
155 | 56, 74, 149, 154 | mpbir3and 1264 |
1
⊢ (𝜑 → 𝐻(Walks‘𝑆)𝑄) |