Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkp1lem7 Structured version   Visualization version   GIF version

Theorem wlkp1lem7 26810
 Description: Lemma for wlkp1 26812. (Contributed by AV, 6-Mar-2021.)
Hypotheses
Ref Expression
wlkp1.v 𝑉 = (Vtx‘𝐺)
wlkp1.i 𝐼 = (iEdg‘𝐺)
wlkp1.f (𝜑 → Fun 𝐼)
wlkp1.a (𝜑𝐼 ∈ Fin)
wlkp1.b (𝜑𝐵 ∈ V)
wlkp1.c (𝜑𝐶𝑉)
wlkp1.d (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
wlkp1.w (𝜑𝐹(Walks‘𝐺)𝑃)
wlkp1.n 𝑁 = (♯‘𝐹)
wlkp1.e (𝜑𝐸 ∈ (Edg‘𝐺))
wlkp1.x (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
wlkp1.u (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
wlkp1.h 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
wlkp1.q 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
wlkp1.s (𝜑 → (Vtx‘𝑆) = 𝑉)
Assertion
Ref Expression
wlkp1lem7 (𝜑 → {(𝑄𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑁)))

Proof of Theorem wlkp1lem7
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 wlkp1.x . . 3 (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
2 fveq2 6332 . . . . . 6 (𝑘 = 𝑁 → (𝑄𝑘) = (𝑄𝑁))
3 fveq2 6332 . . . . . 6 (𝑘 = 𝑁 → (𝑃𝑘) = (𝑃𝑁))
42, 3eqeq12d 2785 . . . . 5 (𝑘 = 𝑁 → ((𝑄𝑘) = (𝑃𝑘) ↔ (𝑄𝑁) = (𝑃𝑁)))
5 wlkp1.v . . . . . 6 𝑉 = (Vtx‘𝐺)
6 wlkp1.i . . . . . 6 𝐼 = (iEdg‘𝐺)
7 wlkp1.f . . . . . 6 (𝜑 → Fun 𝐼)
8 wlkp1.a . . . . . 6 (𝜑𝐼 ∈ Fin)
9 wlkp1.b . . . . . 6 (𝜑𝐵 ∈ V)
10 wlkp1.c . . . . . 6 (𝜑𝐶𝑉)
11 wlkp1.d . . . . . 6 (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
12 wlkp1.w . . . . . 6 (𝜑𝐹(Walks‘𝐺)𝑃)
13 wlkp1.n . . . . . 6 𝑁 = (♯‘𝐹)
14 wlkp1.e . . . . . 6 (𝜑𝐸 ∈ (Edg‘𝐺))
15 wlkp1.u . . . . . 6 (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
16 wlkp1.h . . . . . 6 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
17 wlkp1.q . . . . . 6 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
18 wlkp1.s . . . . . 6 (𝜑 → (Vtx‘𝑆) = 𝑉)
195, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 15, 16, 17, 18wlkp1lem5 26808 . . . . 5 (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝑄𝑘) = (𝑃𝑘))
20 wlkcl 26745 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
2113eqcomi 2779 . . . . . . . 8 (♯‘𝐹) = 𝑁
2221eleq1i 2840 . . . . . . 7 ((♯‘𝐹) ∈ ℕ0𝑁 ∈ ℕ0)
23 nn0fz0 12644 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ (0...𝑁))
2422, 23sylbb 209 . . . . . 6 ((♯‘𝐹) ∈ ℕ0𝑁 ∈ (0...𝑁))
2512, 20, 243syl 18 . . . . 5 (𝜑𝑁 ∈ (0...𝑁))
264, 19, 25rspcdva 3464 . . . 4 (𝜑 → (𝑄𝑁) = (𝑃𝑁))
2717fveq1i 6333 . . . . 5 (𝑄‘(𝑁 + 1)) = ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘(𝑁 + 1))
28 ovex 6822 . . . . . 6 (𝑁 + 1) ∈ V
295, 6, 7, 8, 9, 10, 11, 12, 13wlkp1lem1 26804 . . . . . 6 (𝜑 → ¬ (𝑁 + 1) ∈ dom 𝑃)
30 fsnunfv 6596 . . . . . 6 (((𝑁 + 1) ∈ V ∧ 𝐶𝑉 ∧ ¬ (𝑁 + 1) ∈ dom 𝑃) → ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘(𝑁 + 1)) = 𝐶)
3128, 10, 29, 30mp3an2i 1576 . . . . 5 (𝜑 → ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘(𝑁 + 1)) = 𝐶)
3227, 31syl5eq 2816 . . . 4 (𝜑 → (𝑄‘(𝑁 + 1)) = 𝐶)
3326, 32preq12d 4410 . . 3 (𝜑 → {(𝑄𝑁), (𝑄‘(𝑁 + 1))} = {(𝑃𝑁), 𝐶})
34 fsnunfv 6596 . . . 4 ((𝐵 ∈ V ∧ 𝐸 ∈ (Edg‘𝐺) ∧ ¬ 𝐵 ∈ dom 𝐼) → ((𝐼 ∪ {⟨𝐵, 𝐸⟩})‘𝐵) = 𝐸)
359, 14, 11, 34syl3anc 1475 . . 3 (𝜑 → ((𝐼 ∪ {⟨𝐵, 𝐸⟩})‘𝐵) = 𝐸)
361, 33, 353sstr4d 3795 . 2 (𝜑 → {(𝑄𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((𝐼 ∪ {⟨𝐵, 𝐸⟩})‘𝐵))
375, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 15, 16wlkp1lem3 26806 . 2 (𝜑 → ((iEdg‘𝑆)‘(𝐻𝑁)) = ((𝐼 ∪ {⟨𝐵, 𝐸⟩})‘𝐵))
3836, 37sseqtr4d 3789 1 (𝜑 → {(𝑄𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑁)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   = wceq 1630   ∈ wcel 2144  Vcvv 3349   ∪ cun 3719   ⊆ wss 3721  {csn 4314  {cpr 4316  ⟨cop 4320   class class class wbr 4784  dom cdm 5249  Fun wfun 6025  ‘cfv 6031  (class class class)co 6792  Fincfn 8108  0cc0 10137  1c1 10138   + caddc 10140  ℕ0cn0 11493  ...cfz 12532  ♯chash 13320  Vtxcvtx 26094  iEdgciedg 26095  Edgcedg 26159  Walkscwlks 26726 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-ifp 1049  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-map 8010  df-pm 8011  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-card 8964  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-n0 11494  df-z 11579  df-uz 11888  df-fz 12533  df-fzo 12673  df-hash 13321  df-word 13494  df-wlks 26729 This theorem is referenced by:  wlkp1lem8  26811
 Copyright terms: Public domain W3C validator