![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlkp1lem7 | Structured version Visualization version GIF version |
Description: Lemma for wlkp1 26812. (Contributed by AV, 6-Mar-2021.) |
Ref | Expression |
---|---|
wlkp1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
wlkp1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
wlkp1.f | ⊢ (𝜑 → Fun 𝐼) |
wlkp1.a | ⊢ (𝜑 → 𝐼 ∈ Fin) |
wlkp1.b | ⊢ (𝜑 → 𝐵 ∈ V) |
wlkp1.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
wlkp1.d | ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) |
wlkp1.w | ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
wlkp1.n | ⊢ 𝑁 = (♯‘𝐹) |
wlkp1.e | ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) |
wlkp1.x | ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) |
wlkp1.u | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) |
wlkp1.h | ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) |
wlkp1.q | ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) |
wlkp1.s | ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
Ref | Expression |
---|---|
wlkp1lem7 | ⊢ (𝜑 → {(𝑄‘𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkp1.x | . . 3 ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) | |
2 | fveq2 6332 | . . . . . 6 ⊢ (𝑘 = 𝑁 → (𝑄‘𝑘) = (𝑄‘𝑁)) | |
3 | fveq2 6332 | . . . . . 6 ⊢ (𝑘 = 𝑁 → (𝑃‘𝑘) = (𝑃‘𝑁)) | |
4 | 2, 3 | eqeq12d 2785 | . . . . 5 ⊢ (𝑘 = 𝑁 → ((𝑄‘𝑘) = (𝑃‘𝑘) ↔ (𝑄‘𝑁) = (𝑃‘𝑁))) |
5 | wlkp1.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
6 | wlkp1.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
7 | wlkp1.f | . . . . . 6 ⊢ (𝜑 → Fun 𝐼) | |
8 | wlkp1.a | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ Fin) | |
9 | wlkp1.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ V) | |
10 | wlkp1.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
11 | wlkp1.d | . . . . . 6 ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) | |
12 | wlkp1.w | . . . . . 6 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) | |
13 | wlkp1.n | . . . . . 6 ⊢ 𝑁 = (♯‘𝐹) | |
14 | wlkp1.e | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) | |
15 | wlkp1.u | . . . . . 6 ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) | |
16 | wlkp1.h | . . . . . 6 ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) | |
17 | wlkp1.q | . . . . . 6 ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) | |
18 | wlkp1.s | . . . . . 6 ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) | |
19 | 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 15, 16, 17, 18 | wlkp1lem5 26808 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝑄‘𝑘) = (𝑃‘𝑘)) |
20 | wlkcl 26745 | . . . . . 6 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) | |
21 | 13 | eqcomi 2779 | . . . . . . . 8 ⊢ (♯‘𝐹) = 𝑁 |
22 | 21 | eleq1i 2840 | . . . . . . 7 ⊢ ((♯‘𝐹) ∈ ℕ0 ↔ 𝑁 ∈ ℕ0) |
23 | nn0fz0 12644 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (0...𝑁)) | |
24 | 22, 23 | sylbb 209 | . . . . . 6 ⊢ ((♯‘𝐹) ∈ ℕ0 → 𝑁 ∈ (0...𝑁)) |
25 | 12, 20, 24 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (0...𝑁)) |
26 | 4, 19, 25 | rspcdva 3464 | . . . 4 ⊢ (𝜑 → (𝑄‘𝑁) = (𝑃‘𝑁)) |
27 | 17 | fveq1i 6333 | . . . . 5 ⊢ (𝑄‘(𝑁 + 1)) = ((𝑃 ∪ {〈(𝑁 + 1), 𝐶〉})‘(𝑁 + 1)) |
28 | ovex 6822 | . . . . . 6 ⊢ (𝑁 + 1) ∈ V | |
29 | 5, 6, 7, 8, 9, 10, 11, 12, 13 | wlkp1lem1 26804 | . . . . . 6 ⊢ (𝜑 → ¬ (𝑁 + 1) ∈ dom 𝑃) |
30 | fsnunfv 6596 | . . . . . 6 ⊢ (((𝑁 + 1) ∈ V ∧ 𝐶 ∈ 𝑉 ∧ ¬ (𝑁 + 1) ∈ dom 𝑃) → ((𝑃 ∪ {〈(𝑁 + 1), 𝐶〉})‘(𝑁 + 1)) = 𝐶) | |
31 | 28, 10, 29, 30 | mp3an2i 1576 | . . . . 5 ⊢ (𝜑 → ((𝑃 ∪ {〈(𝑁 + 1), 𝐶〉})‘(𝑁 + 1)) = 𝐶) |
32 | 27, 31 | syl5eq 2816 | . . . 4 ⊢ (𝜑 → (𝑄‘(𝑁 + 1)) = 𝐶) |
33 | 26, 32 | preq12d 4410 | . . 3 ⊢ (𝜑 → {(𝑄‘𝑁), (𝑄‘(𝑁 + 1))} = {(𝑃‘𝑁), 𝐶}) |
34 | fsnunfv 6596 | . . . 4 ⊢ ((𝐵 ∈ V ∧ 𝐸 ∈ (Edg‘𝐺) ∧ ¬ 𝐵 ∈ dom 𝐼) → ((𝐼 ∪ {〈𝐵, 𝐸〉})‘𝐵) = 𝐸) | |
35 | 9, 14, 11, 34 | syl3anc 1475 | . . 3 ⊢ (𝜑 → ((𝐼 ∪ {〈𝐵, 𝐸〉})‘𝐵) = 𝐸) |
36 | 1, 33, 35 | 3sstr4d 3795 | . 2 ⊢ (𝜑 → {(𝑄‘𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((𝐼 ∪ {〈𝐵, 𝐸〉})‘𝐵)) |
37 | 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 15, 16 | wlkp1lem3 26806 | . 2 ⊢ (𝜑 → ((iEdg‘𝑆)‘(𝐻‘𝑁)) = ((𝐼 ∪ {〈𝐵, 𝐸〉})‘𝐵)) |
38 | 36, 37 | sseqtr4d 3789 | 1 ⊢ (𝜑 → {(𝑄‘𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1630 ∈ wcel 2144 Vcvv 3349 ∪ cun 3719 ⊆ wss 3721 {csn 4314 {cpr 4316 〈cop 4320 class class class wbr 4784 dom cdm 5249 Fun wfun 6025 ‘cfv 6031 (class class class)co 6792 Fincfn 8108 0cc0 10137 1c1 10138 + caddc 10140 ℕ0cn0 11493 ...cfz 12532 ♯chash 13320 Vtxcvtx 26094 iEdgciedg 26095 Edgcedg 26159 Walkscwlks 26726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-ifp 1049 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-oadd 7716 df-er 7895 df-map 8010 df-pm 8011 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-card 8964 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-n0 11494 df-z 11579 df-uz 11888 df-fz 12533 df-fzo 12673 df-hash 13321 df-word 13494 df-wlks 26729 |
This theorem is referenced by: wlkp1lem8 26811 |
Copyright terms: Public domain | W3C validator |