MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlklnwwlkln2lem Structured version   Visualization version   GIF version

Theorem wlklnwwlkln2lem 26836
Description: Lemma for wlklnwwlkln2 26837 and wlklnwwlklnupgr2 26839. Formerly part of proof for wlklnwwlkln2 26837. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 12-Apr-2021.)
Hypothesis
Ref Expression
wlklnwwlkln2lem.1 (𝜑 → (𝑃 ∈ (WWalks‘𝐺) → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
Assertion
Ref Expression
wlklnwwlkln2lem (𝜑 → (𝑃 ∈ (𝑁 WWalksN 𝐺) → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (#‘𝑓) = 𝑁)))
Distinct variable groups:   𝑓,𝐺   𝑓,𝑁   𝑃,𝑓   𝜑,𝑓

Proof of Theorem wlklnwwlkln2lem
StepHypRef Expression
1 eqid 2651 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
21wwlknbp 26790 . . 3 (𝑃 ∈ (𝑁 WWalksN 𝐺) → (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)))
3 iswwlksn 26786 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑃 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑃 ∈ (WWalks‘𝐺) ∧ (#‘𝑃) = (𝑁 + 1))))
43adantr 480 . . . . 5 ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → (𝑃 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑃 ∈ (WWalks‘𝐺) ∧ (#‘𝑃) = (𝑁 + 1))))
5 lencl 13356 . . . . . . . . . . . . . 14 (𝑃 ∈ Word (Vtx‘𝐺) → (#‘𝑃) ∈ ℕ0)
65nn0cnd 11391 . . . . . . . . . . . . 13 (𝑃 ∈ Word (Vtx‘𝐺) → (#‘𝑃) ∈ ℂ)
76adantl 481 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → (#‘𝑃) ∈ ℂ)
8 1cnd 10094 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → 1 ∈ ℂ)
9 nn0cn 11340 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
109adantr 480 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → 𝑁 ∈ ℂ)
117, 8, 10subadd2d 10449 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → (((#‘𝑃) − 1) = 𝑁 ↔ (𝑁 + 1) = (#‘𝑃)))
12 eqcom 2658 . . . . . . . . . . 11 ((𝑁 + 1) = (#‘𝑃) ↔ (#‘𝑃) = (𝑁 + 1))
1311, 12syl6rbb 277 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → ((#‘𝑃) = (𝑁 + 1) ↔ ((#‘𝑃) − 1) = 𝑁))
1413biimpcd 239 . . . . . . . . 9 ((#‘𝑃) = (𝑁 + 1) → ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → ((#‘𝑃) − 1) = 𝑁))
1514adantl 481 . . . . . . . 8 ((𝑃 ∈ (WWalks‘𝐺) ∧ (#‘𝑃) = (𝑁 + 1)) → ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → ((#‘𝑃) − 1) = 𝑁))
1615impcom 445 . . . . . . 7 (((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (#‘𝑃) = (𝑁 + 1))) → ((#‘𝑃) − 1) = 𝑁)
17 wlklnwwlkln2lem.1 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 ∈ (WWalks‘𝐺) → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
1817com12 32 . . . . . . . . . . . . 13 (𝑃 ∈ (WWalks‘𝐺) → (𝜑 → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
1918adantr 480 . . . . . . . . . . . 12 ((𝑃 ∈ (WWalks‘𝐺) ∧ (#‘𝑃) = (𝑁 + 1)) → (𝜑 → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
2019adantl 481 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (#‘𝑃) = (𝑁 + 1))) → (𝜑 → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
2120imp 444 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (#‘𝑃) = (𝑁 + 1))) ∧ 𝜑) → ∃𝑓 𝑓(Walks‘𝐺)𝑃)
22 simpr 476 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (#‘𝑃) = (𝑁 + 1))) ∧ 𝜑) ∧ 𝑓(Walks‘𝐺)𝑃) → 𝑓(Walks‘𝐺)𝑃)
23 wlklenvm1 26573 . . . . . . . . . . . . 13 (𝑓(Walks‘𝐺)𝑃 → (#‘𝑓) = ((#‘𝑃) − 1))
2422, 23jccir 561 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (#‘𝑃) = (𝑁 + 1))) ∧ 𝜑) ∧ 𝑓(Walks‘𝐺)𝑃) → (𝑓(Walks‘𝐺)𝑃 ∧ (#‘𝑓) = ((#‘𝑃) − 1)))
2524ex 449 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (#‘𝑃) = (𝑁 + 1))) ∧ 𝜑) → (𝑓(Walks‘𝐺)𝑃 → (𝑓(Walks‘𝐺)𝑃 ∧ (#‘𝑓) = ((#‘𝑃) − 1))))
2625eximdv 1886 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (#‘𝑃) = (𝑁 + 1))) ∧ 𝜑) → (∃𝑓 𝑓(Walks‘𝐺)𝑃 → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (#‘𝑓) = ((#‘𝑃) − 1))))
2721, 26mpd 15 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (#‘𝑃) = (𝑁 + 1))) ∧ 𝜑) → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (#‘𝑓) = ((#‘𝑃) − 1)))
28 eqeq2 2662 . . . . . . . . . . 11 (((#‘𝑃) − 1) = 𝑁 → ((#‘𝑓) = ((#‘𝑃) − 1) ↔ (#‘𝑓) = 𝑁))
2928anbi2d 740 . . . . . . . . . 10 (((#‘𝑃) − 1) = 𝑁 → ((𝑓(Walks‘𝐺)𝑃 ∧ (#‘𝑓) = ((#‘𝑃) − 1)) ↔ (𝑓(Walks‘𝐺)𝑃 ∧ (#‘𝑓) = 𝑁)))
3029exbidv 1890 . . . . . . . . 9 (((#‘𝑃) − 1) = 𝑁 → (∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (#‘𝑓) = ((#‘𝑃) − 1)) ↔ ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (#‘𝑓) = 𝑁)))
3127, 30syl5ib 234 . . . . . . . 8 (((#‘𝑃) − 1) = 𝑁 → ((((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (#‘𝑃) = (𝑁 + 1))) ∧ 𝜑) → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (#‘𝑓) = 𝑁)))
3231expd 451 . . . . . . 7 (((#‘𝑃) − 1) = 𝑁 → (((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (#‘𝑃) = (𝑁 + 1))) → (𝜑 → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (#‘𝑓) = 𝑁))))
3316, 32mpcom 38 . . . . . 6 (((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) ∧ (𝑃 ∈ (WWalks‘𝐺) ∧ (#‘𝑃) = (𝑁 + 1))) → (𝜑 → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (#‘𝑓) = 𝑁)))
3433ex 449 . . . . 5 ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → ((𝑃 ∈ (WWalks‘𝐺) ∧ (#‘𝑃) = (𝑁 + 1)) → (𝜑 → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (#‘𝑓) = 𝑁))))
354, 34sylbid 230 . . . 4 ((𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → (𝑃 ∈ (𝑁 WWalksN 𝐺) → (𝜑 → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (#‘𝑓) = 𝑁))))
36353adant1 1099 . . 3 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑃 ∈ Word (Vtx‘𝐺)) → (𝑃 ∈ (𝑁 WWalksN 𝐺) → (𝜑 → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (#‘𝑓) = 𝑁))))
372, 36mpcom 38 . 2 (𝑃 ∈ (𝑁 WWalksN 𝐺) → (𝜑 → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (#‘𝑓) = 𝑁)))
3837com12 32 1 (𝜑 → (𝑃 ∈ (𝑁 WWalksN 𝐺) → ∃𝑓(𝑓(Walks‘𝐺)𝑃 ∧ (#‘𝑓) = 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wex 1744  wcel 2030  Vcvv 3231   class class class wbr 4685  cfv 5926  (class class class)co 6690  cc 9972  1c1 9975   + caddc 9977  cmin 10304  0cn0 11330  #chash 13157  Word cword 13323  Vtxcvtx 25919  Walkscwlks 26548  WWalkscwwlks 26773   WWalksN cwwlksn 26774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1033  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-wlks 26551  df-wwlks 26778  df-wwlksn 26779
This theorem is referenced by:  wlklnwwlkln2  26837  wlklnwwlklnupgr2  26839
  Copyright terms: Public domain W3C validator