MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkl1loop Structured version   Visualization version   GIF version

Theorem wlkl1loop 26590
Description: A walk of length 1 from a vertex to itself is a loop. (Contributed by AV, 23-Apr-2021.)
Assertion
Ref Expression
wlkl1loop (((Fun (iEdg‘𝐺) ∧ 𝐹(Walks‘𝐺)𝑃) ∧ ((#‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} ∈ (Edg‘𝐺))

Proof of Theorem wlkl1loop
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 wlkv 26564 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
2 simp3l 1109 . . . . . . . . 9 ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((#‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → Fun (iEdg‘𝐺))
3 simp2 1082 . . . . . . . . 9 ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((#‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → 𝐹(Walks‘𝐺)𝑃)
4 c0ex 10072 . . . . . . . . . . . . 13 0 ∈ V
54snid 4241 . . . . . . . . . . . 12 0 ∈ {0}
6 oveq2 6698 . . . . . . . . . . . . 13 ((#‘𝐹) = 1 → (0..^(#‘𝐹)) = (0..^1))
7 fzo01 12590 . . . . . . . . . . . . 13 (0..^1) = {0}
86, 7syl6eq 2701 . . . . . . . . . . . 12 ((#‘𝐹) = 1 → (0..^(#‘𝐹)) = {0})
95, 8syl5eleqr 2737 . . . . . . . . . . 11 ((#‘𝐹) = 1 → 0 ∈ (0..^(#‘𝐹)))
109ad2antrl 764 . . . . . . . . . 10 ((Fun (iEdg‘𝐺) ∧ ((#‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → 0 ∈ (0..^(#‘𝐹)))
11103ad2ant3 1104 . . . . . . . . 9 ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((#‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → 0 ∈ (0..^(#‘𝐹)))
12 eqid 2651 . . . . . . . . . 10 (iEdg‘𝐺) = (iEdg‘𝐺)
1312iedginwlk 26589 . . . . . . . . 9 ((Fun (iEdg‘𝐺) ∧ 𝐹(Walks‘𝐺)𝑃 ∧ 0 ∈ (0..^(#‘𝐹))) → ((iEdg‘𝐺)‘(𝐹‘0)) ∈ ran (iEdg‘𝐺))
142, 3, 11, 13syl3anc 1366 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((#‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → ((iEdg‘𝐺)‘(𝐹‘0)) ∈ ran (iEdg‘𝐺))
15 eqid 2651 . . . . . . . . . . 11 (Vtx‘𝐺) = (Vtx‘𝐺)
1615, 12iswlkg 26565 . . . . . . . . . 10 (𝐺 ∈ V → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))))
178raleqdv 3174 . . . . . . . . . . . . . . 15 ((#‘𝐹) = 1 → (∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ ∀𝑘 ∈ {0}if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
18 oveq1 6697 . . . . . . . . . . . . . . . . . 18 (𝑘 = 0 → (𝑘 + 1) = (0 + 1))
19 0p1e1 11170 . . . . . . . . . . . . . . . . . 18 (0 + 1) = 1
2018, 19syl6eq 2701 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → (𝑘 + 1) = 1)
21 wkslem2 26560 . . . . . . . . . . . . . . . . 17 ((𝑘 = 0 ∧ (𝑘 + 1) = 1) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0)))))
2220, 21mpdan 703 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0)))))
234, 22ralsn 4254 . . . . . . . . . . . . . . 15 (∀𝑘 ∈ {0}if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0))))
2417, 23syl6bb 276 . . . . . . . . . . . . . 14 ((#‘𝐹) = 1 → (∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0)))))
2524ad2antrl 764 . . . . . . . . . . . . 13 ((Fun (iEdg‘𝐺) ∧ ((#‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → (∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0)))))
26 ifptru 1043 . . . . . . . . . . . . . . . . 17 ((𝑃‘0) = (𝑃‘1) → (if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0))) ↔ ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}))
2726biimpa 500 . . . . . . . . . . . . . . . 16 (((𝑃‘0) = (𝑃‘1) ∧ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0)))) → ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)})
2827eqcomd 2657 . . . . . . . . . . . . . . 15 (((𝑃‘0) = (𝑃‘1) ∧ if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0)))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0)))
2928ex 449 . . . . . . . . . . . . . 14 ((𝑃‘0) = (𝑃‘1) → (if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0))))
3029ad2antll 765 . . . . . . . . . . . . 13 ((Fun (iEdg‘𝐺) ∧ ((#‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → (if-((𝑃‘0) = (𝑃‘1), ((iEdg‘𝐺)‘(𝐹‘0)) = {(𝑃‘0)}, {(𝑃‘0), (𝑃‘1)} ⊆ ((iEdg‘𝐺)‘(𝐹‘0))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0))))
3125, 30sylbid 230 . . . . . . . . . . . 12 ((Fun (iEdg‘𝐺) ∧ ((#‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → (∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0))))
3231com12 32 . . . . . . . . . . 11 (∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ((Fun (iEdg‘𝐺) ∧ ((#‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0))))
33323ad2ant3 1104 . . . . . . . . . 10 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((Fun (iEdg‘𝐺) ∧ ((#‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0))))
3416, 33syl6bi 243 . . . . . . . . 9 (𝐺 ∈ V → (𝐹(Walks‘𝐺)𝑃 → ((Fun (iEdg‘𝐺) ∧ ((#‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0)))))
35343imp 1275 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((#‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → {(𝑃‘0)} = ((iEdg‘𝐺)‘(𝐹‘0)))
36 edgval 25986 . . . . . . . . 9 (Edg‘𝐺) = ran (iEdg‘𝐺)
3736a1i 11 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((#‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → (Edg‘𝐺) = ran (iEdg‘𝐺))
3814, 35, 373eltr4d 2745 . . . . . . 7 ((𝐺 ∈ V ∧ 𝐹(Walks‘𝐺)𝑃 ∧ (Fun (iEdg‘𝐺) ∧ ((#‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))) → {(𝑃‘0)} ∈ (Edg‘𝐺))
39383exp 1283 . . . . . 6 (𝐺 ∈ V → (𝐹(Walks‘𝐺)𝑃 → ((Fun (iEdg‘𝐺) ∧ ((#‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} ∈ (Edg‘𝐺))))
40393ad2ant1 1102 . . . . 5 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Walks‘𝐺)𝑃 → ((Fun (iEdg‘𝐺) ∧ ((#‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} ∈ (Edg‘𝐺))))
411, 40mpcom 38 . . . 4 (𝐹(Walks‘𝐺)𝑃 → ((Fun (iEdg‘𝐺) ∧ ((#‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} ∈ (Edg‘𝐺)))
4241expd 451 . . 3 (𝐹(Walks‘𝐺)𝑃 → (Fun (iEdg‘𝐺) → (((#‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)) → {(𝑃‘0)} ∈ (Edg‘𝐺))))
4342impcom 445 . 2 ((Fun (iEdg‘𝐺) ∧ 𝐹(Walks‘𝐺)𝑃) → (((#‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)) → {(𝑃‘0)} ∈ (Edg‘𝐺)))
4443imp 444 1 (((Fun (iEdg‘𝐺) ∧ 𝐹(Walks‘𝐺)𝑃) ∧ ((#‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} ∈ (Edg‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  if-wif 1032  w3a 1054   = wceq 1523  wcel 2030  wral 2941  Vcvv 3231  wss 3607  {csn 4210  {cpr 4212   class class class wbr 4685  dom cdm 5143  ran crn 5144  Fun wfun 5920  wf 5922  cfv 5926  (class class class)co 6690  0cc0 9974  1c1 9975   + caddc 9977  ...cfz 12364  ..^cfzo 12504  #chash 13157  Word cword 13323  Vtxcvtx 25919  iEdgciedg 25920  Edgcedg 25984  Walkscwlks 26548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1033  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-edg 25985  df-wlks 26551
This theorem is referenced by:  clwlkl1loop  26734
  Copyright terms: Public domain W3C validator