MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkiswwlksupgr2 Structured version   Visualization version   GIF version

Theorem wlkiswwlksupgr2 26978
Description: A walk as word corresponds to the sequence of vertices in a walk in a pseudograph. This variant of wlkiswwlks2 26976 does not require 𝐺 to be a simple pseudograph, but it requires the Axiom of Choice (ac6 9486) for its proof. Notice that only the existence of a function 𝑓 can be proven, but, in general, it cannot be "constructed" (as in wlkiswwlks2 26976). (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 10-Apr-2021.)
Assertion
Ref Expression
wlkiswwlksupgr2 (𝐺 ∈ UPGraph → (𝑃 ∈ (WWalks‘𝐺) → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
Distinct variable groups:   𝑓,𝐺   𝑃,𝑓

Proof of Theorem wlkiswwlksupgr2
Dummy variables 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2752 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2752 . . 3 (Edg‘𝐺) = (Edg‘𝐺)
31, 2iswwlks 26931 . 2 (𝑃 ∈ (WWalks‘𝐺) ↔ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
4 edgval 26132 . . . . . . . . . . . . 13 (Edg‘𝐺) = ran (iEdg‘𝐺)
54eleq2i 2823 . . . . . . . . . . . 12 ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺))
6 upgruhgr 26188 . . . . . . . . . . . . . . 15 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
7 eqid 2752 . . . . . . . . . . . . . . . 16 (iEdg‘𝐺) = (iEdg‘𝐺)
87uhgrfun 26152 . . . . . . . . . . . . . . 15 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
96, 8syl 17 . . . . . . . . . . . . . 14 (𝐺 ∈ UPGraph → Fun (iEdg‘𝐺))
109adantl 473 . . . . . . . . . . . . 13 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ UPGraph) → Fun (iEdg‘𝐺))
11 elrnrexdm 6518 . . . . . . . . . . . . . 14 (Fun (iEdg‘𝐺) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺) → ∃𝑥 ∈ dom (iEdg‘𝐺){(𝑃𝑖), (𝑃‘(𝑖 + 1))} = ((iEdg‘𝐺)‘𝑥)))
12 eqcom 2759 . . . . . . . . . . . . . . 15 (((iEdg‘𝐺)‘𝑥) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} = ((iEdg‘𝐺)‘𝑥))
1312rexbii 3171 . . . . . . . . . . . . . 14 (∃𝑥 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑥) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ∃𝑥 ∈ dom (iEdg‘𝐺){(𝑃𝑖), (𝑃‘(𝑖 + 1))} = ((iEdg‘𝐺)‘𝑥))
1411, 13syl6ibr 242 . . . . . . . . . . . . 13 (Fun (iEdg‘𝐺) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺) → ∃𝑥 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑥) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
1510, 14syl 17 . . . . . . . . . . . 12 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ UPGraph) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺) → ∃𝑥 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑥) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
165, 15syl5bi 232 . . . . . . . . . . 11 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ UPGraph) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∃𝑥 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑥) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
1716ralimdv 3093 . . . . . . . . . 10 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝐺 ∈ UPGraph) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))∃𝑥 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑥) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
1817ex 449 . . . . . . . . 9 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (𝐺 ∈ UPGraph → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))∃𝑥 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑥) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
1918com23 86 . . . . . . . 8 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → (𝐺 ∈ UPGraph → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))∃𝑥 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑥) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
20193impia 1109 . . . . . . 7 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (𝐺 ∈ UPGraph → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))∃𝑥 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑥) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
2120impcom 445 . . . . . 6 ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))∃𝑥 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑥) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
22 ovex 6833 . . . . . . 7 (0..^((♯‘𝑃) − 1)) ∈ V
23 fvex 6354 . . . . . . . 8 (iEdg‘𝐺) ∈ V
2423dmex 7256 . . . . . . 7 dom (iEdg‘𝐺) ∈ V
25 fveq2 6344 . . . . . . . 8 (𝑥 = (𝑓𝑖) → ((iEdg‘𝐺)‘𝑥) = ((iEdg‘𝐺)‘(𝑓𝑖)))
2625eqeq1d 2754 . . . . . . 7 (𝑥 = (𝑓𝑖) → (((iEdg‘𝐺)‘𝑥) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
2722, 24, 26ac6 9486 . . . . . 6 (∀𝑖 ∈ (0..^((♯‘𝑃) − 1))∃𝑥 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑥) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} → ∃𝑓(𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
2821, 27syl 17 . . . . 5 ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → ∃𝑓(𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
29 iswrdi 13487 . . . . . . . . . 10 (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) → 𝑓 ∈ Word dom (iEdg‘𝐺))
3029adantr 472 . . . . . . . . 9 ((𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → 𝑓 ∈ Word dom (iEdg‘𝐺))
3130adantl 473 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})) → 𝑓 ∈ Word dom (iEdg‘𝐺))
32 wrdfin 13501 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Word (Vtx‘𝐺) → 𝑃 ∈ Fin)
33 hashnncl 13341 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ Fin → ((♯‘𝑃) ∈ ℕ ↔ 𝑃 ≠ ∅))
3433bicomd 213 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Fin → (𝑃 ≠ ∅ ↔ (♯‘𝑃) ∈ ℕ))
3532, 34syl 17 . . . . . . . . . . . . . . 15 (𝑃 ∈ Word (Vtx‘𝐺) → (𝑃 ≠ ∅ ↔ (♯‘𝑃) ∈ ℕ))
3635biimpac 504 . . . . . . . . . . . . . 14 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (♯‘𝑃) ∈ ℕ)
37 wrdf 13488 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Word (Vtx‘𝐺) → 𝑃:(0..^(♯‘𝑃))⟶(Vtx‘𝐺))
38 nnz 11583 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑃) ∈ ℕ → (♯‘𝑃) ∈ ℤ)
39 fzoval 12657 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑃) ∈ ℤ → (0..^(♯‘𝑃)) = (0...((♯‘𝑃) − 1)))
4038, 39syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑃) ∈ ℕ → (0..^(♯‘𝑃)) = (0...((♯‘𝑃) − 1)))
4140adantr 472 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝑃) ∈ ℕ ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) → (0..^(♯‘𝑃)) = (0...((♯‘𝑃) − 1)))
42 nnm1nn0 11518 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑃) ∈ ℕ → ((♯‘𝑃) − 1) ∈ ℕ0)
43 fnfzo0hash 13418 . . . . . . . . . . . . . . . . . . . . . . 23 ((((♯‘𝑃) − 1) ∈ ℕ0𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) → (♯‘𝑓) = ((♯‘𝑃) − 1))
4442, 43sylan 489 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑃) ∈ ℕ ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) → (♯‘𝑓) = ((♯‘𝑃) − 1))
4544eqcomd 2758 . . . . . . . . . . . . . . . . . . . . 21 (((♯‘𝑃) ∈ ℕ ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) → ((♯‘𝑃) − 1) = (♯‘𝑓))
4645oveq2d 6821 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝑃) ∈ ℕ ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) → (0...((♯‘𝑃) − 1)) = (0...(♯‘𝑓)))
4741, 46eqtrd 2786 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑃) ∈ ℕ ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) → (0..^(♯‘𝑃)) = (0...(♯‘𝑓)))
4847feq2d 6184 . . . . . . . . . . . . . . . . . 18 (((♯‘𝑃) ∈ ℕ ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) → (𝑃:(0..^(♯‘𝑃))⟶(Vtx‘𝐺) ↔ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺)))
4948biimpcd 239 . . . . . . . . . . . . . . . . 17 (𝑃:(0..^(♯‘𝑃))⟶(Vtx‘𝐺) → (((♯‘𝑃) ∈ ℕ ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) → 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺)))
5049expd 451 . . . . . . . . . . . . . . . 16 (𝑃:(0..^(♯‘𝑃))⟶(Vtx‘𝐺) → ((♯‘𝑃) ∈ ℕ → (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) → 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺))))
5137, 50syl 17 . . . . . . . . . . . . . . 15 (𝑃 ∈ Word (Vtx‘𝐺) → ((♯‘𝑃) ∈ ℕ → (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) → 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺))))
5251adantl 473 . . . . . . . . . . . . . 14 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → ((♯‘𝑃) ∈ ℕ → (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) → 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺))))
5336, 52mpd 15 . . . . . . . . . . . . 13 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) → 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺)))
54533adant3 1126 . . . . . . . . . . . 12 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) → 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺)))
5554adantl 473 . . . . . . . . . . 11 ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) → 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺)))
5655com12 32 . . . . . . . . . 10 (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) → ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺)))
5756adantr 472 . . . . . . . . 9 ((𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺)))
5857impcom 445 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})) → 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺))
59 simpr 479 . . . . . . . . . 10 ((((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
6036, 44sylan 489 . . . . . . . . . . . . . . . . 17 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) → (♯‘𝑓) = ((♯‘𝑃) − 1))
6160oveq2d 6821 . . . . . . . . . . . . . . . 16 (((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) → (0..^(♯‘𝑓)) = (0..^((♯‘𝑃) − 1)))
6261ex 449 . . . . . . . . . . . . . . 15 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺)) → (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) → (0..^(♯‘𝑓)) = (0..^((♯‘𝑃) − 1))))
63623adant3 1126 . . . . . . . . . . . . . 14 ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) → (0..^(♯‘𝑓)) = (0..^((♯‘𝑃) − 1))))
6463adantl 473 . . . . . . . . . . . . 13 ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) → (0..^(♯‘𝑓)) = (0..^((♯‘𝑃) − 1))))
6564imp 444 . . . . . . . . . . . 12 (((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) → (0..^(♯‘𝑓)) = (0..^((♯‘𝑃) − 1)))
6665adantr 472 . . . . . . . . . . 11 ((((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → (0..^(♯‘𝑓)) = (0..^((♯‘𝑃) − 1)))
6766raleqdv 3275 . . . . . . . . . 10 ((((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → (∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
6859, 67mpbird 247 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ 𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺)) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
6968anasss 682 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})) → ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
7031, 58, 693jca 1122 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ (𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})) → (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
7170ex 449 . . . . . 6 ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → ((𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
7271eximdv 1987 . . . . 5 ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → (∃𝑓(𝑓:(0..^((♯‘𝑃) − 1))⟶dom (iEdg‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
7328, 72mpd 15 . . . 4 ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
741, 7upgriswlk 26739 . . . . . 6 (𝐺 ∈ UPGraph → (𝑓(Walks‘𝐺)𝑃 ↔ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
7574adantr 472 . . . . 5 ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → (𝑓(Walks‘𝐺)𝑃 ↔ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
7675exbidv 1991 . . . 4 ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → (∃𝑓 𝑓(Walks‘𝐺)𝑃 ↔ ∃𝑓(𝑓 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝑓))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))((iEdg‘𝐺)‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
7773, 76mpbird 247 . . 3 ((𝐺 ∈ UPGraph ∧ (𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → ∃𝑓 𝑓(Walks‘𝐺)𝑃)
7877ex 449 . 2 (𝐺 ∈ UPGraph → ((𝑃 ≠ ∅ ∧ 𝑃 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
793, 78syl5bi 232 1 (𝐺 ∈ UPGraph → (𝑃 ∈ (WWalks‘𝐺) → ∃𝑓 𝑓(Walks‘𝐺)𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1624  wex 1845  wcel 2131  wne 2924  wral 3042  wrex 3043  c0 4050  {cpr 4315   class class class wbr 4796  dom cdm 5258  ran crn 5259  Fun wfun 6035  wf 6037  cfv 6041  (class class class)co 6805  Fincfn 8113  0cc0 10120  1c1 10121   + caddc 10123  cmin 10450  cn 11204  0cn0 11476  cz 11561  ...cfz 12511  ..^cfzo 12651  chash 13303  Word cword 13469  Vtxcvtx 26065  iEdgciedg 26066  Edgcedg 26130  UHGraphcuhgr 26142  UPGraphcupgr 26166  Walkscwlks 26694  WWalkscwwlks 26920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-ac2 9469  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1051  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-se 5218  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-2o 7722  df-oadd 7725  df-er 7903  df-map 8017  df-pm 8018  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-card 8947  df-ac 9121  df-cda 9174  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-2 11263  df-n0 11477  df-xnn0 11548  df-z 11562  df-uz 11872  df-fz 12512  df-fzo 12652  df-hash 13304  df-word 13477  df-edg 26131  df-uhgr 26144  df-upgr 26168  df-wlks 26697  df-wwlks 26925
This theorem is referenced by:  wlkiswwlkupgr  26979  wlklnwwlklnupgr2  26986
  Copyright terms: Public domain W3C validator