MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkiswwlks2lem4 Structured version   Visualization version   GIF version

Theorem wlkiswwlks2lem4 26826
Description: Lemma 4 for wlkiswwlks2 26829. (Contributed by Alexander van der Vekens, 20-Jul-2018.) (Revised by AV, 10-Apr-2021.)
Hypotheses
Ref Expression
wlkiswwlks2lem.f 𝐹 = (𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))
wlkiswwlks2lem.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
wlkiswwlks2lem4 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → (∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
Distinct variable groups:   𝑥,𝑃   𝑥,𝐸   𝑥,𝑉   𝑖,𝐹   𝑖,𝐺   𝑃,𝑖   𝑖,𝑉,𝑥
Allowed substitution hints:   𝐸(𝑖)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem wlkiswwlks2lem4
StepHypRef Expression
1 wlkiswwlks2lem.f . . . 4 𝐹 = (𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))
21wlkiswwlks2lem1 26823 . . 3 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → (#‘𝐹) = ((#‘𝑃) − 1))
323adant1 1099 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → (#‘𝐹) = ((#‘𝑃) − 1))
4 lencl 13356 . . . . . . . . . 10 (𝑃 ∈ Word 𝑉 → (#‘𝑃) ∈ ℕ0)
543ad2ant2 1103 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → (#‘𝑃) ∈ ℕ0)
61wlkiswwlks2lem2 26824 . . . . . . . . 9 (((#‘𝑃) ∈ ℕ0𝑖 ∈ (0..^((#‘𝑃) − 1))) → (𝐹𝑖) = (𝐸‘{(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
75, 6sylan 487 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) ∧ 𝑖 ∈ (0..^((#‘𝑃) − 1))) → (𝐹𝑖) = (𝐸‘{(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
87adantr 480 . . . . . . 7 ((((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) ∧ 𝑖 ∈ (0..^((#‘𝑃) − 1))) ∧ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) → (𝐹𝑖) = (𝐸‘{(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
98fveq2d 6233 . . . . . 6 ((((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) ∧ 𝑖 ∈ (0..^((#‘𝑃) − 1))) ∧ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) → (𝐸‘(𝐹𝑖)) = (𝐸‘(𝐸‘{(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
10 wlkiswwlks2lem.e . . . . . . . . . . 11 𝐸 = (iEdg‘𝐺)
1110uspgrf1oedg 26113 . . . . . . . . . 10 (𝐺 ∈ USPGraph → 𝐸:dom 𝐸1-1-onto→(Edg‘𝐺))
1210rneqi 5384 . . . . . . . . . . . 12 ran 𝐸 = ran (iEdg‘𝐺)
13 edgval 25986 . . . . . . . . . . . 12 (Edg‘𝐺) = ran (iEdg‘𝐺)
1412, 13eqtr4i 2676 . . . . . . . . . . 11 ran 𝐸 = (Edg‘𝐺)
15 f1oeq3 6167 . . . . . . . . . . 11 (ran 𝐸 = (Edg‘𝐺) → (𝐸:dom 𝐸1-1-onto→ran 𝐸𝐸:dom 𝐸1-1-onto→(Edg‘𝐺)))
1614, 15ax-mp 5 . . . . . . . . . 10 (𝐸:dom 𝐸1-1-onto→ran 𝐸𝐸:dom 𝐸1-1-onto→(Edg‘𝐺))
1711, 16sylibr 224 . . . . . . . . 9 (𝐺 ∈ USPGraph → 𝐸:dom 𝐸1-1-onto→ran 𝐸)
18173ad2ant1 1102 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → 𝐸:dom 𝐸1-1-onto→ran 𝐸)
1918adantr 480 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) ∧ 𝑖 ∈ (0..^((#‘𝑃) − 1))) → 𝐸:dom 𝐸1-1-onto→ran 𝐸)
20 f1ocnvfv2 6573 . . . . . . 7 ((𝐸:dom 𝐸1-1-onto→ran 𝐸 ∧ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) → (𝐸‘(𝐸‘{(𝑃𝑖), (𝑃‘(𝑖 + 1))})) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
2119, 20sylan 487 . . . . . 6 ((((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) ∧ 𝑖 ∈ (0..^((#‘𝑃) − 1))) ∧ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) → (𝐸‘(𝐸‘{(𝑃𝑖), (𝑃‘(𝑖 + 1))})) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
229, 21eqtrd 2685 . . . . 5 ((((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) ∧ 𝑖 ∈ (0..^((#‘𝑃) − 1))) ∧ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸) → (𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
2322ex 449 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) ∧ 𝑖 ∈ (0..^((#‘𝑃) − 1))) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → (𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
2423ralimdva 2991 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → (∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^((#‘𝑃) − 1))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
25 oveq2 6698 . . . . 5 ((#‘𝐹) = ((#‘𝑃) − 1) → (0..^(#‘𝐹)) = (0..^((#‘𝑃) − 1)))
2625raleqdv 3174 . . . 4 ((#‘𝐹) = ((#‘𝑃) − 1) → (∀𝑖 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ∀𝑖 ∈ (0..^((#‘𝑃) − 1))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
2726imbi2d 329 . . 3 ((#‘𝐹) = ((#‘𝑃) − 1) → ((∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ↔ (∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^((#‘𝑃) − 1))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
2824, 27syl5ibr 236 . 2 ((#‘𝐹) = ((#‘𝑃) − 1) → ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → (∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
293, 28mpcom 38 1 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → (∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  {cpr 4212   class class class wbr 4685  cmpt 4762  ccnv 5142  dom cdm 5143  ran crn 5144  1-1-ontowf1o 5925  cfv 5926  (class class class)co 6690  0cc0 9974  1c1 9975   + caddc 9977  cle 10113  cmin 10304  0cn0 11330  ..^cfzo 12504  #chash 13157  Word cword 13323  iEdgciedg 25920  Edgcedg 25984  USPGraphcuspgr 26088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-edg 25985  df-uspgr 26090
This theorem is referenced by:  wlkiswwlks2lem6  26828
  Copyright terms: Public domain W3C validator