MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlk2v2elem2 Structured version   Visualization version   GIF version

Theorem wlk2v2elem2 27308
Description: Lemma 2 for wlk2v2e 27309: The values of 𝐼 after 𝐹 are edges between two vertices enumerated by 𝑃. (Contributed by Alexander van der Vekens, 22-Oct-2017.) (Revised by AV, 9-Jan-2021.)
Hypotheses
Ref Expression
wlk2v2e.i 𝐼 = ⟨“{𝑋, 𝑌}”⟩
wlk2v2e.f 𝐹 = ⟨“00”⟩
wlk2v2e.x 𝑋 ∈ V
wlk2v2e.y 𝑌 ∈ V
wlk2v2e.p 𝑃 = ⟨“𝑋𝑌𝑋”⟩
Assertion
Ref Expression
wlk2v2elem2 𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}
Distinct variable groups:   𝑘,𝐹   𝑘,𝐼   𝑃,𝑘
Allowed substitution hints:   𝑋(𝑘)   𝑌(𝑘)

Proof of Theorem wlk2v2elem2
StepHypRef Expression
1 wlk2v2e.f . . . . . . 7 𝐹 = ⟨“00”⟩
21fveq1i 6353 . . . . . 6 (𝐹‘0) = (⟨“00”⟩‘0)
3 0z 11580 . . . . . . 7 0 ∈ ℤ
4 s2fv0 13832 . . . . . . 7 (0 ∈ ℤ → (⟨“00”⟩‘0) = 0)
53, 4ax-mp 5 . . . . . 6 (⟨“00”⟩‘0) = 0
62, 5eqtri 2782 . . . . 5 (𝐹‘0) = 0
76fveq2i 6355 . . . 4 (𝐼‘(𝐹‘0)) = (𝐼‘0)
8 wlk2v2e.i . . . . . 6 𝐼 = ⟨“{𝑋, 𝑌}”⟩
98fveq1i 6353 . . . . 5 (𝐼‘0) = (⟨“{𝑋, 𝑌}”⟩‘0)
10 prex 5058 . . . . . 6 {𝑋, 𝑌} ∈ V
11 s1fv 13581 . . . . . 6 ({𝑋, 𝑌} ∈ V → (⟨“{𝑋, 𝑌}”⟩‘0) = {𝑋, 𝑌})
1210, 11ax-mp 5 . . . . 5 (⟨“{𝑋, 𝑌}”⟩‘0) = {𝑋, 𝑌}
139, 12eqtri 2782 . . . 4 (𝐼‘0) = {𝑋, 𝑌}
14 wlk2v2e.p . . . . . . . 8 𝑃 = ⟨“𝑋𝑌𝑋”⟩
1514fveq1i 6353 . . . . . . 7 (𝑃‘0) = (⟨“𝑋𝑌𝑋”⟩‘0)
16 wlk2v2e.x . . . . . . . 8 𝑋 ∈ V
17 s3fv0 13836 . . . . . . . 8 (𝑋 ∈ V → (⟨“𝑋𝑌𝑋”⟩‘0) = 𝑋)
1816, 17ax-mp 5 . . . . . . 7 (⟨“𝑋𝑌𝑋”⟩‘0) = 𝑋
1915, 18eqtri 2782 . . . . . 6 (𝑃‘0) = 𝑋
2014fveq1i 6353 . . . . . . 7 (𝑃‘1) = (⟨“𝑋𝑌𝑋”⟩‘1)
21 wlk2v2e.y . . . . . . . 8 𝑌 ∈ V
22 s3fv1 13837 . . . . . . . 8 (𝑌 ∈ V → (⟨“𝑋𝑌𝑋”⟩‘1) = 𝑌)
2321, 22ax-mp 5 . . . . . . 7 (⟨“𝑋𝑌𝑋”⟩‘1) = 𝑌
2420, 23eqtri 2782 . . . . . 6 (𝑃‘1) = 𝑌
2519, 24preq12i 4417 . . . . 5 {(𝑃‘0), (𝑃‘1)} = {𝑋, 𝑌}
2625eqcomi 2769 . . . 4 {𝑋, 𝑌} = {(𝑃‘0), (𝑃‘1)}
277, 13, 263eqtri 2786 . . 3 (𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)}
281fveq1i 6353 . . . . . 6 (𝐹‘1) = (⟨“00”⟩‘1)
29 s2fv1 13833 . . . . . . 7 (0 ∈ ℤ → (⟨“00”⟩‘1) = 0)
303, 29ax-mp 5 . . . . . 6 (⟨“00”⟩‘1) = 0
3128, 30eqtri 2782 . . . . 5 (𝐹‘1) = 0
3231fveq2i 6355 . . . 4 (𝐼‘(𝐹‘1)) = (𝐼‘0)
33 prcom 4411 . . . . 5 {𝑋, 𝑌} = {𝑌, 𝑋}
3414fveq1i 6353 . . . . . . . 8 (𝑃‘2) = (⟨“𝑋𝑌𝑋”⟩‘2)
35 s3fv2 13838 . . . . . . . . 9 (𝑋 ∈ V → (⟨“𝑋𝑌𝑋”⟩‘2) = 𝑋)
3616, 35ax-mp 5 . . . . . . . 8 (⟨“𝑋𝑌𝑋”⟩‘2) = 𝑋
3734, 36eqtri 2782 . . . . . . 7 (𝑃‘2) = 𝑋
3824, 37preq12i 4417 . . . . . 6 {(𝑃‘1), (𝑃‘2)} = {𝑌, 𝑋}
3938eqcomi 2769 . . . . 5 {𝑌, 𝑋} = {(𝑃‘1), (𝑃‘2)}
4033, 39eqtri 2782 . . . 4 {𝑋, 𝑌} = {(𝑃‘1), (𝑃‘2)}
4132, 13, 403eqtri 2786 . . 3 (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}
42 2wlklem 26773 . . 3 (∀𝑘 ∈ {0, 1} (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
4327, 41, 42mpbir2an 993 . 2 𝑘 ∈ {0, 1} (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}
44 s2cli 13825 . . . . . . 7 ⟨“00”⟩ ∈ Word V
451, 44eqeltri 2835 . . . . . 6 𝐹 ∈ Word V
46 wrddm 13498 . . . . . 6 (𝐹 ∈ Word V → dom 𝐹 = (0..^(♯‘𝐹)))
4745, 46ax-mp 5 . . . . 5 dom 𝐹 = (0..^(♯‘𝐹))
4847eqcomi 2769 . . . 4 (0..^(♯‘𝐹)) = dom 𝐹
491dmeqi 5480 . . . 4 dom 𝐹 = dom ⟨“00”⟩
50 s2dm 13835 . . . 4 dom ⟨“00”⟩ = {0, 1}
5148, 49, 503eqtri 2786 . . 3 (0..^(♯‘𝐹)) = {0, 1}
5251raleqi 3281 . 2 (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ∀𝑘 ∈ {0, 1} (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
5343, 52mpbir 221 1 𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1632  wcel 2139  wral 3050  Vcvv 3340  {cpr 4323  dom cdm 5266  cfv 6049  (class class class)co 6813  0cc0 10128  1c1 10129   + caddc 10131  2c2 11262  cz 11569  ..^cfzo 12659  chash 13311  Word cword 13477  ⟨“cs1 13480  ⟨“cs2 13786  ⟨“cs3 13787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-fzo 12660  df-hash 13312  df-word 13485  df-concat 13487  df-s1 13488  df-s2 13793  df-s3 13794
This theorem is referenced by:  wlk2v2e  27309
  Copyright terms: Public domain W3C validator