![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlk2v2e | Structured version Visualization version GIF version |
Description: In a graph with two vertices and one edge connecting these two vertices, to go from one vertex to the other and back to the first vertex via the same/only edge is a walk. Notice that 𝐺 is a simple graph (without loops) only if 𝑋 ≠ 𝑌. (Contributed by Alexander van der Vekens, 22-Oct-2017.) (Revised by AV, 8-Jan-2021.) |
Ref | Expression |
---|---|
wlk2v2e.i | ⊢ 𝐼 = 〈“{𝑋, 𝑌}”〉 |
wlk2v2e.f | ⊢ 𝐹 = 〈“00”〉 |
wlk2v2e.x | ⊢ 𝑋 ∈ V |
wlk2v2e.y | ⊢ 𝑌 ∈ V |
wlk2v2e.p | ⊢ 𝑃 = 〈“𝑋𝑌𝑋”〉 |
wlk2v2e.g | ⊢ 𝐺 = 〈{𝑋, 𝑌}, 𝐼〉 |
Ref | Expression |
---|---|
wlk2v2e | ⊢ 𝐹(Walks‘𝐺)𝑃 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlk2v2e.g | . . . . 5 ⊢ 𝐺 = 〈{𝑋, 𝑌}, 𝐼〉 | |
2 | wlk2v2e.i | . . . . . 6 ⊢ 𝐼 = 〈“{𝑋, 𝑌}”〉 | |
3 | 2 | opeq2i 4541 | . . . . 5 ⊢ 〈{𝑋, 𝑌}, 𝐼〉 = 〈{𝑋, 𝑌}, 〈“{𝑋, 𝑌}”〉〉 |
4 | 1, 3 | eqtri 2792 | . . . 4 ⊢ 𝐺 = 〈{𝑋, 𝑌}, 〈“{𝑋, 𝑌}”〉〉 |
5 | wlk2v2e.x | . . . . 5 ⊢ 𝑋 ∈ V | |
6 | wlk2v2e.y | . . . . 5 ⊢ 𝑌 ∈ V | |
7 | uspgr2v1e2w 26365 | . . . . 5 ⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 〈{𝑋, 𝑌}, 〈“{𝑋, 𝑌}”〉〉 ∈ USPGraph) | |
8 | 5, 6, 7 | mp2an 664 | . . . 4 ⊢ 〈{𝑋, 𝑌}, 〈“{𝑋, 𝑌}”〉〉 ∈ USPGraph |
9 | 4, 8 | eqeltri 2845 | . . 3 ⊢ 𝐺 ∈ USPGraph |
10 | uspgrupgr 26292 | . . 3 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph) | |
11 | 9, 10 | ax-mp 5 | . 2 ⊢ 𝐺 ∈ UPGraph |
12 | wlk2v2e.f | . . . . 5 ⊢ 𝐹 = 〈“00”〉 | |
13 | 2, 12 | wlk2v2elem1 27332 | . . . 4 ⊢ 𝐹 ∈ Word dom 𝐼 |
14 | wlk2v2e.p | . . . . . . . 8 ⊢ 𝑃 = 〈“𝑋𝑌𝑋”〉 | |
15 | 5 | prid1 4431 | . . . . . . . . 9 ⊢ 𝑋 ∈ {𝑋, 𝑌} |
16 | 6 | prid2 4432 | . . . . . . . . 9 ⊢ 𝑌 ∈ {𝑋, 𝑌} |
17 | s3cl 13832 | . . . . . . . . 9 ⊢ ((𝑋 ∈ {𝑋, 𝑌} ∧ 𝑌 ∈ {𝑋, 𝑌} ∧ 𝑋 ∈ {𝑋, 𝑌}) → 〈“𝑋𝑌𝑋”〉 ∈ Word {𝑋, 𝑌}) | |
18 | 15, 16, 15, 17 | mp3an 1571 | . . . . . . . 8 ⊢ 〈“𝑋𝑌𝑋”〉 ∈ Word {𝑋, 𝑌} |
19 | 14, 18 | eqeltri 2845 | . . . . . . 7 ⊢ 𝑃 ∈ Word {𝑋, 𝑌} |
20 | wrdf 13505 | . . . . . . 7 ⊢ (𝑃 ∈ Word {𝑋, 𝑌} → 𝑃:(0..^(♯‘𝑃))⟶{𝑋, 𝑌}) | |
21 | 19, 20 | ax-mp 5 | . . . . . 6 ⊢ 𝑃:(0..^(♯‘𝑃))⟶{𝑋, 𝑌} |
22 | 14 | fveq2i 6335 | . . . . . . . . 9 ⊢ (♯‘𝑃) = (♯‘〈“𝑋𝑌𝑋”〉) |
23 | s3len 13847 | . . . . . . . . 9 ⊢ (♯‘〈“𝑋𝑌𝑋”〉) = 3 | |
24 | 22, 23 | eqtr2i 2793 | . . . . . . . 8 ⊢ 3 = (♯‘𝑃) |
25 | 24 | oveq2i 6803 | . . . . . . 7 ⊢ (0..^3) = (0..^(♯‘𝑃)) |
26 | 25 | feq2i 6177 | . . . . . 6 ⊢ (𝑃:(0..^3)⟶{𝑋, 𝑌} ↔ 𝑃:(0..^(♯‘𝑃))⟶{𝑋, 𝑌}) |
27 | 21, 26 | mpbir 221 | . . . . 5 ⊢ 𝑃:(0..^3)⟶{𝑋, 𝑌} |
28 | 12 | fveq2i 6335 | . . . . . . . . 9 ⊢ (♯‘𝐹) = (♯‘〈“00”〉) |
29 | s2len 13842 | . . . . . . . . 9 ⊢ (♯‘〈“00”〉) = 2 | |
30 | 28, 29 | eqtri 2792 | . . . . . . . 8 ⊢ (♯‘𝐹) = 2 |
31 | 30 | oveq2i 6803 | . . . . . . 7 ⊢ (0...(♯‘𝐹)) = (0...2) |
32 | 3z 11611 | . . . . . . . . 9 ⊢ 3 ∈ ℤ | |
33 | fzoval 12678 | . . . . . . . . 9 ⊢ (3 ∈ ℤ → (0..^3) = (0...(3 − 1))) | |
34 | 32, 33 | ax-mp 5 | . . . . . . . 8 ⊢ (0..^3) = (0...(3 − 1)) |
35 | 3m1e2 11338 | . . . . . . . . 9 ⊢ (3 − 1) = 2 | |
36 | 35 | oveq2i 6803 | . . . . . . . 8 ⊢ (0...(3 − 1)) = (0...2) |
37 | 34, 36 | eqtr2i 2793 | . . . . . . 7 ⊢ (0...2) = (0..^3) |
38 | 31, 37 | eqtri 2792 | . . . . . 6 ⊢ (0...(♯‘𝐹)) = (0..^3) |
39 | 38 | feq2i 6177 | . . . . 5 ⊢ (𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌} ↔ 𝑃:(0..^3)⟶{𝑋, 𝑌}) |
40 | 27, 39 | mpbir 221 | . . . 4 ⊢ 𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌} |
41 | 2, 12, 5, 6, 14 | wlk2v2elem2 27333 | . . . 4 ⊢ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} |
42 | 13, 40, 41 | 3pm3.2i 1422 | . . 3 ⊢ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌} ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
43 | 1 | fveq2i 6335 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘〈{𝑋, 𝑌}, 𝐼〉) |
44 | prex 5037 | . . . . . 6 ⊢ {𝑋, 𝑌} ∈ V | |
45 | s1cli 13584 | . . . . . . 7 ⊢ 〈“{𝑋, 𝑌}”〉 ∈ Word V | |
46 | 2, 45 | eqeltri 2845 | . . . . . 6 ⊢ 𝐼 ∈ Word V |
47 | opvtxfv 26104 | . . . . . 6 ⊢ (({𝑋, 𝑌} ∈ V ∧ 𝐼 ∈ Word V) → (Vtx‘〈{𝑋, 𝑌}, 𝐼〉) = {𝑋, 𝑌}) | |
48 | 44, 46, 47 | mp2an 664 | . . . . 5 ⊢ (Vtx‘〈{𝑋, 𝑌}, 𝐼〉) = {𝑋, 𝑌} |
49 | 43, 48 | eqtr2i 2793 | . . . 4 ⊢ {𝑋, 𝑌} = (Vtx‘𝐺) |
50 | 1 | fveq2i 6335 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘〈{𝑋, 𝑌}, 𝐼〉) |
51 | opiedgfv 26107 | . . . . . 6 ⊢ (({𝑋, 𝑌} ∈ V ∧ 𝐼 ∈ Word V) → (iEdg‘〈{𝑋, 𝑌}, 𝐼〉) = 𝐼) | |
52 | 44, 46, 51 | mp2an 664 | . . . . 5 ⊢ (iEdg‘〈{𝑋, 𝑌}, 𝐼〉) = 𝐼 |
53 | 50, 52 | eqtr2i 2793 | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) |
54 | 49, 53 | upgriswlk 26771 | . . 3 ⊢ (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶{𝑋, 𝑌} ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) |
55 | 42, 54 | mpbiri 248 | . 2 ⊢ (𝐺 ∈ UPGraph → 𝐹(Walks‘𝐺)𝑃) |
56 | 11, 55 | ax-mp 5 | 1 ⊢ 𝐹(Walks‘𝐺)𝑃 |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1070 = wceq 1630 ∈ wcel 2144 ∀wral 3060 Vcvv 3349 {cpr 4316 〈cop 4320 class class class wbr 4784 dom cdm 5249 ⟶wf 6027 ‘cfv 6031 (class class class)co 6792 0cc0 10137 1c1 10138 + caddc 10140 − cmin 10467 2c2 11271 3c3 11272 ℤcz 11578 ...cfz 12532 ..^cfzo 12672 ♯chash 13320 Word cword 13486 〈“cs1 13489 〈“cs2 13794 〈“cs3 13795 Vtxcvtx 26094 iEdgciedg 26095 UPGraphcupgr 26195 USPGraphcuspgr 26264 Walkscwlks 26726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-ifp 1049 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-2o 7713 df-oadd 7716 df-er 7895 df-map 8010 df-pm 8011 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-card 8964 df-cda 9191 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-2 11280 df-3 11281 df-n0 11494 df-xnn0 11565 df-z 11579 df-uz 11888 df-fz 12533 df-fzo 12673 df-hash 13321 df-word 13494 df-concat 13496 df-s1 13497 df-s2 13801 df-s3 13802 df-vtx 26096 df-iedg 26097 df-edg 26160 df-uhgr 26173 df-upgr 26197 df-uspgr 26266 df-wlks 26729 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |