Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wlimeq12 Structured version   Visualization version   GIF version

Theorem wlimeq12 31749
 Description: Equality theorem for the limit class. (Contributed by Scott Fenton, 15-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.)
Assertion
Ref Expression
wlimeq12 ((𝑅 = 𝑆𝐴 = 𝐵) → WLim(𝑅, 𝐴) = WLim(𝑆, 𝐵))

Proof of Theorem wlimeq12
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . 3 ((𝑅 = 𝑆𝐴 = 𝐵) → 𝐴 = 𝐵)
2 simpl 473 . . . . . 6 ((𝑅 = 𝑆𝐴 = 𝐵) → 𝑅 = 𝑆)
31, 1, 2infeq123d 8384 . . . . 5 ((𝑅 = 𝑆𝐴 = 𝐵) → inf(𝐴, 𝐴, 𝑅) = inf(𝐵, 𝐵, 𝑆))
43neeq2d 2853 . . . 4 ((𝑅 = 𝑆𝐴 = 𝐵) → (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ↔ 𝑥 ≠ inf(𝐵, 𝐵, 𝑆)))
5 equid 1938 . . . . . . 7 𝑥 = 𝑥
6 predeq123 5679 . . . . . . 7 ((𝑅 = 𝑆𝐴 = 𝐵𝑥 = 𝑥) → Pred(𝑅, 𝐴, 𝑥) = Pred(𝑆, 𝐵, 𝑥))
75, 6mp3an3 1412 . . . . . 6 ((𝑅 = 𝑆𝐴 = 𝐵) → Pred(𝑅, 𝐴, 𝑥) = Pred(𝑆, 𝐵, 𝑥))
87, 1, 2supeq123d 8353 . . . . 5 ((𝑅 = 𝑆𝐴 = 𝐵) → sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅) = sup(Pred(𝑆, 𝐵, 𝑥), 𝐵, 𝑆))
98eqeq2d 2631 . . . 4 ((𝑅 = 𝑆𝐴 = 𝐵) → (𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅) ↔ 𝑥 = sup(Pred(𝑆, 𝐵, 𝑥), 𝐵, 𝑆)))
104, 9anbi12d 747 . . 3 ((𝑅 = 𝑆𝐴 = 𝐵) → ((𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅)) ↔ (𝑥 ≠ inf(𝐵, 𝐵, 𝑆) ∧ 𝑥 = sup(Pred(𝑆, 𝐵, 𝑥), 𝐵, 𝑆))))
111, 10rabeqbidv 3193 . 2 ((𝑅 = 𝑆𝐴 = 𝐵) → {𝑥𝐴 ∣ (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅))} = {𝑥𝐵 ∣ (𝑥 ≠ inf(𝐵, 𝐵, 𝑆) ∧ 𝑥 = sup(Pred(𝑆, 𝐵, 𝑥), 𝐵, 𝑆))})
12 df-wlim 31742 . 2 WLim(𝑅, 𝐴) = {𝑥𝐴 ∣ (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅))}
13 df-wlim 31742 . 2 WLim(𝑆, 𝐵) = {𝑥𝐵 ∣ (𝑥 ≠ inf(𝐵, 𝐵, 𝑆) ∧ 𝑥 = sup(Pred(𝑆, 𝐵, 𝑥), 𝐵, 𝑆))}
1411, 12, 133eqtr4g 2680 1 ((𝑅 = 𝑆𝐴 = 𝐵) → WLim(𝑅, 𝐴) = WLim(𝑆, 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1482   ≠ wne 2793  {crab 2915  Predcpred 5677  supcsup 8343  infcinf 8344  WLimcwlim 31738 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-ral 2916  df-rex 2917  df-rab 2920  df-v 3200  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-br 4652  df-opab 4711  df-xp 5118  df-cnv 5120  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-sup 8345  df-inf 8346  df-wlim 31742 This theorem is referenced by:  wlimeq1  31750  wlimeq2  31751
 Copyright terms: Public domain W3C validator