Mathbox for Wolf Lammen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-dfnan2 Structured version   Visualization version   GIF version

Theorem wl-dfnan2 33426
 Description: An alternative definition of "nand" based on imnan 437. See df-nan 1488 for the original definition. This theorem allows various shortenings. (Contributed by Wolf Lammen, 26-Jun-2020.)
Assertion
Ref Expression
wl-dfnan2 ((𝜑𝜓) ↔ (𝜑 → ¬ 𝜓))

Proof of Theorem wl-dfnan2
StepHypRef Expression
1 df-nan 1488 . 2 ((𝜑𝜓) ↔ ¬ (𝜑𝜓))
2 imnan 437 . 2 ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑𝜓))
31, 2bitr4i 267 1 ((𝜑𝜓) ↔ (𝜑 → ¬ 𝜓))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   ⊼ wnan 1487 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 197  df-an 385  df-nan 1488 This theorem is referenced by:  wl-nancom  33427  wl-nannan  33428  wl-nannot  33429  wl-nanbi1  33430  wl-nanbi2  33431
 Copyright terms: Public domain W3C validator