 Mathbox for Wolf Lammen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-19.8eqv Structured version   Visualization version   GIF version

Theorem wl-19.8eqv 33622
 Description: Under the assumption ¬ 𝑥 = 𝑦 a specialized version of 19.8a 2199 is provable from Tarski's FOL and ax13v 2392 only. Note that this reverts the implication in ax13lem2 2441, so in fact (¬ 𝑥 = 𝑦 → (∃𝑥𝑧 = 𝑦 ↔ 𝑧 = 𝑦)) holds. (Contributed by Wolf Lammen, 17-Apr-2021.)
Assertion
Ref Expression
wl-19.8eqv 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∃𝑥 𝑧 = 𝑦))
Distinct variable group:   𝑥,𝑧

Proof of Theorem wl-19.8eqv
StepHypRef Expression
1 ax13lem1 2393 . 2 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
2 19.2 2058 . 2 (∀𝑥 𝑧 = 𝑦 → ∃𝑥 𝑧 = 𝑦)
31, 2syl6 35 1 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∃𝑥 𝑧 = 𝑦))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4  ∀wal 1630  ∃wex 1853 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-13 2391 This theorem depends on definitions:  df-bi 197  df-an 385  df-ex 1854 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator