MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wksonproplem Structured version   Visualization version   GIF version

Theorem wksonproplem 26833
Description: Lemma for theorems for properties of walks between two vertices, e.g. trlsonprop 26836. (Contributed by AV, 16-Jan-2021.)
Hypotheses
Ref Expression
wksonproplem.v 𝑉 = (Vtx‘𝐺)
wksonproplem.b (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(𝑊𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(𝑂𝐺)𝐵)𝑃𝐹(𝑄𝐺)𝑃)))
wksonproplem.d 𝑊 = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑎(𝑂𝑔)𝑏)𝑝𝑓(𝑄𝑔)𝑝)}))
wksonproplem.w (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ 𝑓(𝑄𝐺)𝑝) → 𝑓(Walks‘𝐺)𝑝)
Assertion
Ref Expression
wksonproplem (𝐹(𝐴(𝑊𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(𝑂𝐺)𝐵)𝑃𝐹(𝑄𝐺)𝑃)))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑓,𝑔,𝑝   𝐵,𝑎,𝑏,𝑓,𝑔,𝑝   𝐺,𝑎,𝑏,𝑓,𝑔,𝑝   𝑂,𝑎,𝑏,𝑔   𝑄,𝑎,𝑏,𝑔   𝑉,𝑎,𝑏,𝑓,𝑔,𝑝
Allowed substitution hints:   𝑃(𝑓,𝑔,𝑝,𝑎,𝑏)   𝑄(𝑓,𝑝)   𝐹(𝑓,𝑔,𝑝,𝑎,𝑏)   𝑂(𝑓,𝑝)   𝑊(𝑓,𝑔,𝑝,𝑎,𝑏)

Proof of Theorem wksonproplem
StepHypRef Expression
1 wksonproplem.v . . . . . 6 𝑉 = (Vtx‘𝐺)
2 fvex 6364 . . . . . 6 (Vtx‘𝐺) ∈ V
31, 2eqeltri 2836 . . . . 5 𝑉 ∈ V
4 wksonproplem.d . . . . . 6 𝑊 = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑎(𝑂𝑔)𝑏)𝑝𝑓(𝑄𝑔)𝑝)}))
5 simp1 1131 . . . . . . 7 ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) → 𝐺 ∈ V)
6 simp2 1132 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) → 𝐴𝑉)
76, 1syl6eleq 2850 . . . . . . 7 ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) → 𝐴 ∈ (Vtx‘𝐺))
8 simp3 1133 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) → 𝐵𝑉)
98, 1syl6eleq 2850 . . . . . . 7 ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) → 𝐵 ∈ (Vtx‘𝐺))
10 wksv 26747 . . . . . . . 8 {⟨𝑓, 𝑝⟩ ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V
1110a1i 11 . . . . . . 7 ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) → {⟨𝑓, 𝑝⟩ ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V)
12 wksonproplem.w . . . . . . 7 (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ 𝑓(𝑄𝐺)𝑝) → 𝑓(Walks‘𝐺)𝑝)
135, 7, 9, 11, 12, 4mptmpt2opabovd 7419 . . . . . 6 ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) → (𝐴(𝑊𝐺)𝐵) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝐴(𝑂𝐺)𝐵)𝑝𝑓(𝑄𝐺)𝑝)})
14 fveq2 6354 . . . . . . 7 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
1514, 1syl6eqr 2813 . . . . . 6 (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉)
16 fveq2 6354 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑂𝑔) = (𝑂𝐺))
1716oveqd 6832 . . . . . . . 8 (𝑔 = 𝐺 → (𝑎(𝑂𝑔)𝑏) = (𝑎(𝑂𝐺)𝑏))
1817breqd 4816 . . . . . . 7 (𝑔 = 𝐺 → (𝑓(𝑎(𝑂𝑔)𝑏)𝑝𝑓(𝑎(𝑂𝐺)𝑏)𝑝))
19 fveq2 6354 . . . . . . . 8 (𝑔 = 𝐺 → (𝑄𝑔) = (𝑄𝐺))
2019breqd 4816 . . . . . . 7 (𝑔 = 𝐺 → (𝑓(𝑄𝑔)𝑝𝑓(𝑄𝐺)𝑝))
2118, 20anbi12d 749 . . . . . 6 (𝑔 = 𝐺 → ((𝑓(𝑎(𝑂𝑔)𝑏)𝑝𝑓(𝑄𝑔)𝑝) ↔ (𝑓(𝑎(𝑂𝐺)𝑏)𝑝𝑓(𝑄𝐺)𝑝)))
224, 13, 15, 15, 21bropfvvvv 7427 . . . . 5 ((𝑉 ∈ V ∧ 𝑉 ∈ V) → (𝐹(𝐴(𝑊𝐺)𝐵)𝑃 → (𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))))
233, 3, 22mp2an 710 . . . 4 (𝐹(𝐴(𝑊𝐺)𝐵)𝑃 → (𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
24 3anass 1081 . . . . . 6 ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ↔ (𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉)))
2524anbi1i 733 . . . . 5 (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ↔ ((𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
26 df-3an 1074 . . . . 5 ((𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ↔ ((𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
2725, 26bitr4i 267 . . . 4 (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ↔ (𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
2823, 27sylibr 224 . . 3 (𝐹(𝐴(𝑊𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
29 wksonproplem.b . . . . 5 (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(𝑊𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(𝑂𝐺)𝐵)𝑃𝐹(𝑄𝐺)𝑃)))
3029biimpd 219 . . . 4 (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(𝑊𝐺)𝐵)𝑃 → (𝐹(𝐴(𝑂𝐺)𝐵)𝑃𝐹(𝑄𝐺)𝑃)))
3130imdistani 728 . . 3 ((((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ 𝐹(𝐴(𝑊𝐺)𝐵)𝑃) → (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ (𝐹(𝐴(𝑂𝐺)𝐵)𝑃𝐹(𝑄𝐺)𝑃)))
3228, 31mpancom 706 . 2 (𝐹(𝐴(𝑊𝐺)𝐵)𝑃 → (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ (𝐹(𝐴(𝑂𝐺)𝐵)𝑃𝐹(𝑄𝐺)𝑃)))
33 df-3an 1074 . 2 (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(𝑂𝐺)𝐵)𝑃𝐹(𝑄𝐺)𝑃)) ↔ (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ (𝐹(𝐴(𝑂𝐺)𝐵)𝑃𝐹(𝑄𝐺)𝑃)))
3432, 33sylibr 224 1 (𝐹(𝐴(𝑊𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(𝑂𝐺)𝐵)𝑃𝐹(𝑄𝐺)𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2140  Vcvv 3341   class class class wbr 4805  {copab 4865  cmpt 4882  cfv 6050  (class class class)co 6815  cmpt2 6817  Vtxcvtx 26095  Walkscwlks 26724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1051  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-er 7914  df-map 8028  df-pm 8029  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-card 8976  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-nn 11234  df-n0 11506  df-z 11591  df-uz 11901  df-fz 12541  df-fzo 12681  df-hash 13333  df-word 13506  df-wlks 26727
This theorem is referenced by:  trlsonprop  26836  pthsonprop  26872  spthonprop  26873
  Copyright terms: Public domain W3C validator