Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  wksfval Structured version   Visualization version   GIF version

Theorem wksfval 26740
 Description: The set of walks (in an undirected graph). (Contributed by AV, 30-Dec-2020.)
Hypotheses
Ref Expression
wksfval.v 𝑉 = (Vtx‘𝐺)
wksfval.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
wksfval (𝐺𝑊 → (Walks‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))})
Distinct variable groups:   𝑓,𝐺,𝑘,𝑝   𝑓,𝐼,𝑝   𝑉,𝑝   𝑓,𝑊
Allowed substitution hints:   𝐼(𝑘)   𝑉(𝑓,𝑘)   𝑊(𝑘,𝑝)

Proof of Theorem wksfval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 df-wlks 26730 . . 3 Walks = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓𝑘))))})
21a1i 11 . 2 (𝐺𝑊 → Walks = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓𝑘))))}))
3 fveq2 6333 . . . . . . . . 9 (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺))
4 wksfval.i . . . . . . . . 9 𝐼 = (iEdg‘𝐺)
53, 4syl6eqr 2823 . . . . . . . 8 (𝑔 = 𝐺 → (iEdg‘𝑔) = 𝐼)
65dmeqd 5463 . . . . . . 7 (𝑔 = 𝐺 → dom (iEdg‘𝑔) = dom 𝐼)
7 wrdeq 13523 . . . . . . 7 (dom (iEdg‘𝑔) = dom 𝐼 → Word dom (iEdg‘𝑔) = Word dom 𝐼)
86, 7syl 17 . . . . . 6 (𝑔 = 𝐺 → Word dom (iEdg‘𝑔) = Word dom 𝐼)
98eleq2d 2836 . . . . 5 (𝑔 = 𝐺 → (𝑓 ∈ Word dom (iEdg‘𝑔) ↔ 𝑓 ∈ Word dom 𝐼))
10 fveq2 6333 . . . . . . 7 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
11 wksfval.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
1210, 11syl6eqr 2823 . . . . . 6 (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉)
1312feq3d 6171 . . . . 5 (𝑔 = 𝐺 → (𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ↔ 𝑝:(0...(♯‘𝑓))⟶𝑉))
14 biidd 252 . . . . . . 7 (𝑔 = 𝐺 → ((𝑝𝑘) = (𝑝‘(𝑘 + 1)) ↔ (𝑝𝑘) = (𝑝‘(𝑘 + 1))))
155fveq1d 6335 . . . . . . . 8 (𝑔 = 𝐺 → ((iEdg‘𝑔)‘(𝑓𝑘)) = (𝐼‘(𝑓𝑘)))
1615eqeq1d 2773 . . . . . . 7 (𝑔 = 𝐺 → (((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘)} ↔ (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}))
1715sseq2d 3782 . . . . . . 7 (𝑔 = 𝐺 → ({(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓𝑘)) ↔ {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))
1814, 16, 17ifpbi123d 1064 . . . . . 6 (𝑔 = 𝐺 → (if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓𝑘))) ↔ if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘)))))
1918ralbidv 3135 . . . . 5 (𝑔 = 𝐺 → (∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓𝑘))) ↔ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘)))))
209, 13, 193anbi123d 1547 . . . 4 (𝑔 = 𝐺 → ((𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓𝑘)))) ↔ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))))
2120opabbidv 4851 . . 3 (𝑔 = 𝐺 → {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓𝑘))))} = {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))})
2221adantl 467 . 2 ((𝐺𝑊𝑔 = 𝐺) → {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓𝑘))))} = {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))})
23 elex 3364 . 2 (𝐺𝑊𝐺 ∈ V)
24 3anass 1080 . . . 4 ((𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘)))) ↔ (𝑓 ∈ Word dom 𝐼 ∧ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))))
2524opabbii 4852 . . 3 {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))} = {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼 ∧ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘)))))}
264fvexi 6345 . . . . . 6 𝐼 ∈ V
2726dmex 7250 . . . . 5 dom 𝐼 ∈ V
28 wrdexg 13511 . . . . 5 (dom 𝐼 ∈ V → Word dom 𝐼 ∈ V)
2927, 28mp1i 13 . . . 4 (𝐺𝑊 → Word dom 𝐼 ∈ V)
30 ovex 6827 . . . . . 6 (0...(♯‘𝑓)) ∈ V
3111fvexi 6345 . . . . . . 7 𝑉 ∈ V
3231a1i 11 . . . . . 6 ((𝐺𝑊𝑓 ∈ Word dom 𝐼) → 𝑉 ∈ V)
33 mapex 8019 . . . . . 6 (((0...(♯‘𝑓)) ∈ V ∧ 𝑉 ∈ V) → {𝑝𝑝:(0...(♯‘𝑓))⟶𝑉} ∈ V)
3430, 32, 33sylancr 575 . . . . 5 ((𝐺𝑊𝑓 ∈ Word dom 𝐼) → {𝑝𝑝:(0...(♯‘𝑓))⟶𝑉} ∈ V)
35 simpl 468 . . . . . . 7 ((𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘)))) → 𝑝:(0...(♯‘𝑓))⟶𝑉)
3635ss2abi 3823 . . . . . 6 {𝑝 ∣ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))} ⊆ {𝑝𝑝:(0...(♯‘𝑓))⟶𝑉}
3736a1i 11 . . . . 5 ((𝐺𝑊𝑓 ∈ Word dom 𝐼) → {𝑝 ∣ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))} ⊆ {𝑝𝑝:(0...(♯‘𝑓))⟶𝑉})
3834, 37ssexd 4940 . . . 4 ((𝐺𝑊𝑓 ∈ Word dom 𝐼) → {𝑝 ∣ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))} ∈ V)
3929, 38opabex3d 7296 . . 3 (𝐺𝑊 → {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼 ∧ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘)))))} ∈ V)
4025, 39syl5eqel 2854 . 2 (𝐺𝑊 → {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))} ∈ V)
412, 22, 23, 40fvmptd 6432 1 (𝐺𝑊 → (Walks‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382  if-wif 1049   ∧ w3a 1071   = wceq 1631   ∈ wcel 2145  {cab 2757  ∀wral 3061  Vcvv 3351   ⊆ wss 3723  {csn 4317  {cpr 4319  {copab 4847   ↦ cmpt 4864  dom cdm 5250  ⟶wf 6026  ‘cfv 6030  (class class class)co 6796  0cc0 10142  1c1 10143   + caddc 10145  ...cfz 12533  ..^cfzo 12673  ♯chash 13321  Word cword 13487  Vtxcvtx 26095  iEdgciedg 26096  Walkscwlks 26727 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-ifp 1050  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-er 7900  df-map 8015  df-pm 8016  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-card 8969  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-n0 11500  df-z 11585  df-uz 11894  df-fz 12534  df-fzo 12674  df-hash 13322  df-word 13495  df-wlks 26730 This theorem is referenced by:  iswlk  26741  wlkprop  26742  wlkv  26743
 Copyright terms: Public domain W3C validator