MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  winalim2 Structured version   Visualization version   GIF version

Theorem winalim2 9556
Description: A nontrivial weakly inaccessible cardinal is a limit aleph. (Contributed by Mario Carneiro, 29-May-2014.)
Assertion
Ref Expression
winalim2 ((𝐴 ∈ Inaccw𝐴 ≠ ω) → ∃𝑥((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem winalim2
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 winacard 9552 . . . 4 (𝐴 ∈ Inaccw → (card‘𝐴) = 𝐴)
2 winainf 9554 . . . . 5 (𝐴 ∈ Inaccw → ω ⊆ 𝐴)
3 cardalephex 8951 . . . . 5 (ω ⊆ 𝐴 → ((card‘𝐴) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥)))
42, 3syl 17 . . . 4 (𝐴 ∈ Inaccw → ((card‘𝐴) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥)))
51, 4mpbid 222 . . 3 (𝐴 ∈ Inaccw → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))
65adantr 480 . 2 ((𝐴 ∈ Inaccw𝐴 ≠ ω) → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))
7 df-rex 2947 . . 3 (∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥) ↔ ∃𝑥(𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥)))
8 simprr 811 . . . . . . 7 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → 𝐴 = (ℵ‘𝑥))
98eqcomd 2657 . . . . . 6 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → (ℵ‘𝑥) = 𝐴)
10 simprl 809 . . . . . . . 8 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → 𝑥 ∈ On)
11 onzsl 7088 . . . . . . . 8 (𝑥 ∈ On ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦 ∨ (𝑥 ∈ V ∧ Lim 𝑥)))
1210, 11sylib 208 . . . . . . 7 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦 ∨ (𝑥 ∈ V ∧ Lim 𝑥)))
13 simplr 807 . . . . . . . . . 10 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → 𝐴 ≠ ω)
14 fveq2 6229 . . . . . . . . . . . . . 14 (𝑥 = ∅ → (ℵ‘𝑥) = (ℵ‘∅))
15 aleph0 8927 . . . . . . . . . . . . . 14 (ℵ‘∅) = ω
1614, 15syl6eq 2701 . . . . . . . . . . . . 13 (𝑥 = ∅ → (ℵ‘𝑥) = ω)
17 eqtr 2670 . . . . . . . . . . . . 13 ((𝐴 = (ℵ‘𝑥) ∧ (ℵ‘𝑥) = ω) → 𝐴 = ω)
1816, 17sylan2 490 . . . . . . . . . . . 12 ((𝐴 = (ℵ‘𝑥) ∧ 𝑥 = ∅) → 𝐴 = ω)
1918ex 449 . . . . . . . . . . 11 (𝐴 = (ℵ‘𝑥) → (𝑥 = ∅ → 𝐴 = ω))
2019necon3ad 2836 . . . . . . . . . 10 (𝐴 = (ℵ‘𝑥) → (𝐴 ≠ ω → ¬ 𝑥 = ∅))
218, 13, 20sylc 65 . . . . . . . . 9 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → ¬ 𝑥 = ∅)
2221pm2.21d 118 . . . . . . . 8 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → (𝑥 = ∅ → Lim 𝑥))
23 suceloni 7055 . . . . . . . . . . . . . . . 16 (𝑦 ∈ On → suc 𝑦 ∈ On)
24 vex 3234 . . . . . . . . . . . . . . . . 17 𝑦 ∈ V
2524sucid 5842 . . . . . . . . . . . . . . . 16 𝑦 ∈ suc 𝑦
26 alephord2i 8938 . . . . . . . . . . . . . . . 16 (suc 𝑦 ∈ On → (𝑦 ∈ suc 𝑦 → (ℵ‘𝑦) ∈ (ℵ‘suc 𝑦)))
2723, 25, 26mpisyl 21 . . . . . . . . . . . . . . 15 (𝑦 ∈ On → (ℵ‘𝑦) ∈ (ℵ‘suc 𝑦))
2827ad2antrl 764 . . . . . . . . . . . . . 14 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → (ℵ‘𝑦) ∈ (ℵ‘suc 𝑦))
29 simplrr 818 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → 𝐴 = (ℵ‘𝑥))
30 fveq2 6229 . . . . . . . . . . . . . . . 16 (𝑥 = suc 𝑦 → (ℵ‘𝑥) = (ℵ‘suc 𝑦))
3130ad2antll 765 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → (ℵ‘𝑥) = (ℵ‘suc 𝑦))
3229, 31eqtrd 2685 . . . . . . . . . . . . . 14 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → 𝐴 = (ℵ‘suc 𝑦))
3328, 32eleqtrrd 2733 . . . . . . . . . . . . 13 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → (ℵ‘𝑦) ∈ 𝐴)
34 elwina 9546 . . . . . . . . . . . . . . 15 (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑧𝐴𝑤𝐴 𝑧𝑤))
3534simp3bi 1098 . . . . . . . . . . . . . 14 (𝐴 ∈ Inaccw → ∀𝑧𝐴𝑤𝐴 𝑧𝑤)
3635ad3antrrr 766 . . . . . . . . . . . . 13 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → ∀𝑧𝐴𝑤𝐴 𝑧𝑤)
37 breq1 4688 . . . . . . . . . . . . . . 15 (𝑧 = (ℵ‘𝑦) → (𝑧𝑤 ↔ (ℵ‘𝑦) ≺ 𝑤))
3837rexbidv 3081 . . . . . . . . . . . . . 14 (𝑧 = (ℵ‘𝑦) → (∃𝑤𝐴 𝑧𝑤 ↔ ∃𝑤𝐴 (ℵ‘𝑦) ≺ 𝑤))
3938rspcva 3338 . . . . . . . . . . . . 13 (((ℵ‘𝑦) ∈ 𝐴 ∧ ∀𝑧𝐴𝑤𝐴 𝑧𝑤) → ∃𝑤𝐴 (ℵ‘𝑦) ≺ 𝑤)
4033, 36, 39syl2anc 694 . . . . . . . . . . . 12 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → ∃𝑤𝐴 (ℵ‘𝑦) ≺ 𝑤)
4140expr 642 . . . . . . . . . . 11 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ 𝑦 ∈ On) → (𝑥 = suc 𝑦 → ∃𝑤𝐴 (ℵ‘𝑦) ≺ 𝑤))
42 iscard 8839 . . . . . . . . . . . . . . . . . . 19 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑤𝐴 𝑤𝐴))
4342simprbi 479 . . . . . . . . . . . . . . . . . 18 ((card‘𝐴) = 𝐴 → ∀𝑤𝐴 𝑤𝐴)
44 rsp 2958 . . . . . . . . . . . . . . . . . 18 (∀𝑤𝐴 𝑤𝐴 → (𝑤𝐴𝑤𝐴))
451, 43, 443syl 18 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ Inaccw → (𝑤𝐴𝑤𝐴))
4645ad3antrrr 766 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → (𝑤𝐴𝑤𝐴))
4732breq2d 4697 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → (𝑤𝐴𝑤 ≺ (ℵ‘suc 𝑦)))
4846, 47sylibd 229 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → (𝑤𝐴𝑤 ≺ (ℵ‘suc 𝑦)))
49 alephnbtwn2 8933 . . . . . . . . . . . . . . . 16 ¬ ((ℵ‘𝑦) ≺ 𝑤𝑤 ≺ (ℵ‘suc 𝑦))
50 pm3.21 463 . . . . . . . . . . . . . . . 16 (𝑤 ≺ (ℵ‘suc 𝑦) → ((ℵ‘𝑦) ≺ 𝑤 → ((ℵ‘𝑦) ≺ 𝑤𝑤 ≺ (ℵ‘suc 𝑦))))
5149, 50mtoi 190 . . . . . . . . . . . . . . 15 (𝑤 ≺ (ℵ‘suc 𝑦) → ¬ (ℵ‘𝑦) ≺ 𝑤)
5248, 51syl6 35 . . . . . . . . . . . . . 14 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → (𝑤𝐴 → ¬ (ℵ‘𝑦) ≺ 𝑤))
5352imp 444 . . . . . . . . . . . . 13 (((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) ∧ 𝑤𝐴) → ¬ (ℵ‘𝑦) ≺ 𝑤)
5453nrexdv 3030 . . . . . . . . . . . 12 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ (𝑦 ∈ On ∧ 𝑥 = suc 𝑦)) → ¬ ∃𝑤𝐴 (ℵ‘𝑦) ≺ 𝑤)
5554expr 642 . . . . . . . . . . 11 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ 𝑦 ∈ On) → (𝑥 = suc 𝑦 → ¬ ∃𝑤𝐴 (ℵ‘𝑦) ≺ 𝑤))
5641, 55pm2.65d 187 . . . . . . . . . 10 ((((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) ∧ 𝑦 ∈ On) → ¬ 𝑥 = suc 𝑦)
5756nrexdv 3030 . . . . . . . . 9 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → ¬ ∃𝑦 ∈ On 𝑥 = suc 𝑦)
5857pm2.21d 118 . . . . . . . 8 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → (∃𝑦 ∈ On 𝑥 = suc 𝑦 → Lim 𝑥))
59 simpr 476 . . . . . . . . 9 ((𝑥 ∈ V ∧ Lim 𝑥) → Lim 𝑥)
6059a1i 11 . . . . . . . 8 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → ((𝑥 ∈ V ∧ Lim 𝑥) → Lim 𝑥))
6122, 58, 603jaod 1432 . . . . . . 7 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → ((𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦 ∨ (𝑥 ∈ V ∧ Lim 𝑥)) → Lim 𝑥))
6212, 61mpd 15 . . . . . 6 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → Lim 𝑥)
639, 62jca 553 . . . . 5 (((𝐴 ∈ Inaccw𝐴 ≠ ω) ∧ (𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥))) → ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥))
6463ex 449 . . . 4 ((𝐴 ∈ Inaccw𝐴 ≠ ω) → ((𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥)) → ((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)))
6564eximdv 1886 . . 3 ((𝐴 ∈ Inaccw𝐴 ≠ ω) → (∃𝑥(𝑥 ∈ On ∧ 𝐴 = (ℵ‘𝑥)) → ∃𝑥((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)))
667, 65syl5bi 232 . 2 ((𝐴 ∈ Inaccw𝐴 ≠ ω) → (∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥) → ∃𝑥((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)))
676, 66mpd 15 1 ((𝐴 ∈ Inaccw𝐴 ≠ ω) → ∃𝑥((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3o 1053   = wceq 1523  wex 1744  wcel 2030  wne 2823  wral 2941  wrex 2942  Vcvv 3231  wss 3607  c0 3948   class class class wbr 4685  Oncon0 5761  Lim wlim 5762  suc csuc 5763  cfv 5926  ωcom 7107  csdm 7996  cardccrd 8799  cale 8800  cfccf 8801  Inaccwcwina 9542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-oi 8456  df-har 8504  df-card 8803  df-aleph 8804  df-cf 8805  df-wina 9544
This theorem is referenced by:  winafp  9557
  Copyright terms: Public domain W3C validator