![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > winacard | Structured version Visualization version GIF version |
Description: A weakly inaccessible cardinal is a cardinal. (Contributed by Mario Carneiro, 29-May-2014.) |
Ref | Expression |
---|---|
winacard | ⊢ (𝐴 ∈ Inaccw → (card‘𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elwina 9692 | . 2 ⊢ (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) | |
2 | cardcf 9258 | . . . 4 ⊢ (card‘(cf‘𝐴)) = (cf‘𝐴) | |
3 | fveq2 6344 | . . . 4 ⊢ ((cf‘𝐴) = 𝐴 → (card‘(cf‘𝐴)) = (card‘𝐴)) | |
4 | id 22 | . . . 4 ⊢ ((cf‘𝐴) = 𝐴 → (cf‘𝐴) = 𝐴) | |
5 | 2, 3, 4 | 3eqtr3a 2810 | . . 3 ⊢ ((cf‘𝐴) = 𝐴 → (card‘𝐴) = 𝐴) |
6 | 5 | 3ad2ant2 1128 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦) → (card‘𝐴) = 𝐴) |
7 | 1, 6 | sylbi 207 | 1 ⊢ (𝐴 ∈ Inaccw → (card‘𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 = wceq 1624 ∈ wcel 2131 ≠ wne 2924 ∀wral 3042 ∃wrex 3043 ∅c0 4050 class class class wbr 4796 ‘cfv 6041 ≺ csdm 8112 cardccrd 8943 cfccf 8945 Inaccwcwina 9688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-ral 3047 df-rex 3048 df-rab 3051 df-v 3334 df-sbc 3569 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-int 4620 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-ord 5879 df-on 5880 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-er 7903 df-en 8114 df-card 8947 df-cf 8949 df-wina 9690 |
This theorem is referenced by: winalim 9701 winalim2 9702 gchina 9705 inar1 9781 |
Copyright terms: Public domain | W3C validator |