MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wilthlem3 Structured version   Visualization version   GIF version

Theorem wilthlem3 24995
Description: Lemma for wilth 24996. Here we round out the argument of wilthlem2 24994 with the final step of the induction. The induction argument shows that every subset of 1...(𝑃 − 1) that is closed under inverse and contains 𝑃 − 1 multiplies to -1 mod 𝑃, and clearly 1...(𝑃 − 1) itself is such a set. Thus, the product of all the elements is -1, and all that is left is to translate the group sum notation (which we used for its unordered summing capabilities) into an ordered sequence to match the definition of the factorial. (Contributed by Mario Carneiro, 24-Jan-2015.) (Proof shortened by AV, 27-Jul-2019.)
Hypotheses
Ref Expression
wilthlem.t 𝑇 = (mulGrp‘ℂfld)
wilthlem.a 𝐴 = {𝑥 ∈ 𝒫 (1...(𝑃 − 1)) ∣ ((𝑃 − 1) ∈ 𝑥 ∧ ∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥)}
Assertion
Ref Expression
wilthlem3 (𝑃 ∈ ℙ → 𝑃 ∥ ((!‘(𝑃 − 1)) + 1))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑃,𝑦   𝑥,𝑇,𝑦

Proof of Theorem wilthlem3
Dummy variables 𝑡 𝑠 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmuz2 15610 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
2 uz2m1nn 11956 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → (𝑃 − 1) ∈ ℕ)
31, 2syl 17 . . . . . . 7 (𝑃 ∈ ℙ → (𝑃 − 1) ∈ ℕ)
4 nnuz 11916 . . . . . . 7 ℕ = (ℤ‘1)
53, 4syl6eleq 2849 . . . . . 6 (𝑃 ∈ ℙ → (𝑃 − 1) ∈ (ℤ‘1))
6 eluzfz2 12542 . . . . . 6 ((𝑃 − 1) ∈ (ℤ‘1) → (𝑃 − 1) ∈ (1...(𝑃 − 1)))
75, 6syl 17 . . . . 5 (𝑃 ∈ ℙ → (𝑃 − 1) ∈ (1...(𝑃 − 1)))
8 simpl 474 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℙ)
9 elfzelz 12535 . . . . . . . . 9 (𝑦 ∈ (1...(𝑃 − 1)) → 𝑦 ∈ ℤ)
109adantl 473 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ (1...(𝑃 − 1))) → 𝑦 ∈ ℤ)
11 prmnn 15590 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
12 fzm1ndvds 15246 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ 𝑦 ∈ (1...(𝑃 − 1))) → ¬ 𝑃𝑦)
1311, 12sylan 489 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ (1...(𝑃 − 1))) → ¬ 𝑃𝑦)
14 eqid 2760 . . . . . . . . 9 ((𝑦↑(𝑃 − 2)) mod 𝑃) = ((𝑦↑(𝑃 − 2)) mod 𝑃)
1514prmdiv 15692 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ ℤ ∧ ¬ 𝑃𝑦) → (((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑦 · ((𝑦↑(𝑃 − 2)) mod 𝑃)) − 1)))
168, 10, 13, 15syl3anc 1477 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ (1...(𝑃 − 1))) → (((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑦 · ((𝑦↑(𝑃 − 2)) mod 𝑃)) − 1)))
1716simpld 477 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ (1...(𝑃 − 1))) → ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)))
1817ralrimiva 3104 . . . . 5 (𝑃 ∈ ℙ → ∀𝑦 ∈ (1...(𝑃 − 1))((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)))
19 ovex 6841 . . . . . . 7 (1...(𝑃 − 1)) ∈ V
2019pwid 4318 . . . . . 6 (1...(𝑃 − 1)) ∈ 𝒫 (1...(𝑃 − 1))
21 eleq2 2828 . . . . . . . 8 (𝑥 = (1...(𝑃 − 1)) → ((𝑃 − 1) ∈ 𝑥 ↔ (𝑃 − 1) ∈ (1...(𝑃 − 1))))
22 eleq2 2828 . . . . . . . . 9 (𝑥 = (1...(𝑃 − 1)) → (((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥 ↔ ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1))))
2322raleqbi1dv 3285 . . . . . . . 8 (𝑥 = (1...(𝑃 − 1)) → (∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥 ↔ ∀𝑦 ∈ (1...(𝑃 − 1))((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1))))
2421, 23anbi12d 749 . . . . . . 7 (𝑥 = (1...(𝑃 − 1)) → (((𝑃 − 1) ∈ 𝑥 ∧ ∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥) ↔ ((𝑃 − 1) ∈ (1...(𝑃 − 1)) ∧ ∀𝑦 ∈ (1...(𝑃 − 1))((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)))))
25 wilthlem.a . . . . . . 7 𝐴 = {𝑥 ∈ 𝒫 (1...(𝑃 − 1)) ∣ ((𝑃 − 1) ∈ 𝑥 ∧ ∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥)}
2624, 25elrab2 3507 . . . . . 6 ((1...(𝑃 − 1)) ∈ 𝐴 ↔ ((1...(𝑃 − 1)) ∈ 𝒫 (1...(𝑃 − 1)) ∧ ((𝑃 − 1) ∈ (1...(𝑃 − 1)) ∧ ∀𝑦 ∈ (1...(𝑃 − 1))((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)))))
2720, 26mpbiran 991 . . . . 5 ((1...(𝑃 − 1)) ∈ 𝐴 ↔ ((𝑃 − 1) ∈ (1...(𝑃 − 1)) ∧ ∀𝑦 ∈ (1...(𝑃 − 1))((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1))))
287, 18, 27sylanbrc 701 . . . 4 (𝑃 ∈ ℙ → (1...(𝑃 − 1)) ∈ 𝐴)
29 fzfi 12965 . . . . 5 (1...(𝑃 − 1)) ∈ Fin
30 eleq1 2827 . . . . . . . 8 (𝑠 = 𝑡 → (𝑠𝐴𝑡𝐴))
31 reseq2 5546 . . . . . . . . . . 11 (𝑠 = 𝑡 → ( I ↾ 𝑠) = ( I ↾ 𝑡))
3231oveq2d 6829 . . . . . . . . . 10 (𝑠 = 𝑡 → (𝑇 Σg ( I ↾ 𝑠)) = (𝑇 Σg ( I ↾ 𝑡)))
3332oveq1d 6828 . . . . . . . . 9 (𝑠 = 𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = ((𝑇 Σg ( I ↾ 𝑡)) mod 𝑃))
3433eqeq1d 2762 . . . . . . . 8 (𝑠 = 𝑡 → (((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃) ↔ ((𝑇 Σg ( I ↾ 𝑡)) mod 𝑃) = (-1 mod 𝑃)))
3530, 34imbi12d 333 . . . . . . 7 (𝑠 = 𝑡 → ((𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) ↔ (𝑡𝐴 → ((𝑇 Σg ( I ↾ 𝑡)) mod 𝑃) = (-1 mod 𝑃))))
3635imbi2d 329 . . . . . 6 (𝑠 = 𝑡 → ((𝑃 ∈ ℙ → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃))) ↔ (𝑃 ∈ ℙ → (𝑡𝐴 → ((𝑇 Σg ( I ↾ 𝑡)) mod 𝑃) = (-1 mod 𝑃)))))
37 eleq1 2827 . . . . . . . 8 (𝑠 = (1...(𝑃 − 1)) → (𝑠𝐴 ↔ (1...(𝑃 − 1)) ∈ 𝐴))
38 reseq2 5546 . . . . . . . . . . 11 (𝑠 = (1...(𝑃 − 1)) → ( I ↾ 𝑠) = ( I ↾ (1...(𝑃 − 1))))
3938oveq2d 6829 . . . . . . . . . 10 (𝑠 = (1...(𝑃 − 1)) → (𝑇 Σg ( I ↾ 𝑠)) = (𝑇 Σg ( I ↾ (1...(𝑃 − 1)))))
4039oveq1d 6828 . . . . . . . . 9 (𝑠 = (1...(𝑃 − 1)) → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃))
4140eqeq1d 2762 . . . . . . . 8 (𝑠 = (1...(𝑃 − 1)) → (((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃) ↔ ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃) = (-1 mod 𝑃)))
4237, 41imbi12d 333 . . . . . . 7 (𝑠 = (1...(𝑃 − 1)) → ((𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) ↔ ((1...(𝑃 − 1)) ∈ 𝐴 → ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃) = (-1 mod 𝑃))))
4342imbi2d 329 . . . . . 6 (𝑠 = (1...(𝑃 − 1)) → ((𝑃 ∈ ℙ → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃))) ↔ (𝑃 ∈ ℙ → ((1...(𝑃 − 1)) ∈ 𝐴 → ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃) = (-1 mod 𝑃)))))
44 bi2.04 375 . . . . . . . . . . 11 ((𝑠𝑡 → (𝑃 ∈ ℙ → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))) ↔ (𝑃 ∈ ℙ → (𝑠𝑡 → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))))
45 pm2.27 42 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → ((𝑃 ∈ ℙ → (𝑠𝑡 → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → (𝑠𝑡 → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))))
4645com34 91 . . . . . . . . . . 11 (𝑃 ∈ ℙ → ((𝑃 ∈ ℙ → (𝑠𝑡 → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → (𝑠𝐴 → (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))))
4744, 46syl5bi 232 . . . . . . . . . 10 (𝑃 ∈ ℙ → ((𝑠𝑡 → (𝑃 ∈ ℙ → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → (𝑠𝐴 → (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))))
4847alimdv 1994 . . . . . . . . 9 (𝑃 ∈ ℙ → (∀𝑠(𝑠𝑡 → (𝑃 ∈ ℙ → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → ∀𝑠(𝑠𝐴 → (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))))
49 df-ral 3055 . . . . . . . . 9 (∀𝑠𝐴 (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) ↔ ∀𝑠(𝑠𝐴 → (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃))))
5048, 49syl6ibr 242 . . . . . . . 8 (𝑃 ∈ ℙ → (∀𝑠(𝑠𝑡 → (𝑃 ∈ ℙ → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → ∀𝑠𝐴 (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃))))
51 wilthlem.t . . . . . . . . . 10 𝑇 = (mulGrp‘ℂfld)
52 simp1 1131 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ ∀𝑠𝐴 (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) ∧ 𝑡𝐴) → 𝑃 ∈ ℙ)
53 simp3 1133 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ ∀𝑠𝐴 (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) ∧ 𝑡𝐴) → 𝑡𝐴)
54 simp2 1132 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ ∀𝑠𝐴 (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) ∧ 𝑡𝐴) → ∀𝑠𝐴 (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))
5551, 25, 52, 53, 54wilthlem2 24994 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ ∀𝑠𝐴 (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) ∧ 𝑡𝐴) → ((𝑇 Σg ( I ↾ 𝑡)) mod 𝑃) = (-1 mod 𝑃))
56553exp 1113 . . . . . . . 8 (𝑃 ∈ ℙ → (∀𝑠𝐴 (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) → (𝑡𝐴 → ((𝑇 Σg ( I ↾ 𝑡)) mod 𝑃) = (-1 mod 𝑃))))
5750, 56syldc 48 . . . . . . 7 (∀𝑠(𝑠𝑡 → (𝑃 ∈ ℙ → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → (𝑃 ∈ ℙ → (𝑡𝐴 → ((𝑇 Σg ( I ↾ 𝑡)) mod 𝑃) = (-1 mod 𝑃))))
5857a1i 11 . . . . . 6 (𝑡 ∈ Fin → (∀𝑠(𝑠𝑡 → (𝑃 ∈ ℙ → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → (𝑃 ∈ ℙ → (𝑡𝐴 → ((𝑇 Σg ( I ↾ 𝑡)) mod 𝑃) = (-1 mod 𝑃)))))
5936, 43, 58findcard3 8368 . . . . 5 ((1...(𝑃 − 1)) ∈ Fin → (𝑃 ∈ ℙ → ((1...(𝑃 − 1)) ∈ 𝐴 → ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃) = (-1 mod 𝑃))))
6029, 59ax-mp 5 . . . 4 (𝑃 ∈ ℙ → ((1...(𝑃 − 1)) ∈ 𝐴 → ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃) = (-1 mod 𝑃)))
6128, 60mpd 15 . . 3 (𝑃 ∈ ℙ → ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃) = (-1 mod 𝑃))
62 cnfld1 19973 . . . . . 6 1 = (1r‘ℂfld)
6351, 62ringidval 18703 . . . . 5 1 = (0g𝑇)
64 cncrng 19969 . . . . . 6 fld ∈ CRing
6551crngmgp 18755 . . . . . 6 (ℂfld ∈ CRing → 𝑇 ∈ CMnd)
6664, 65mp1i 13 . . . . 5 (𝑃 ∈ ℙ → 𝑇 ∈ CMnd)
6729a1i 11 . . . . 5 (𝑃 ∈ ℙ → (1...(𝑃 − 1)) ∈ Fin)
68 zsubrg 20001 . . . . . 6 ℤ ∈ (SubRing‘ℂfld)
6951subrgsubm 18995 . . . . . 6 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubMnd‘𝑇))
7068, 69mp1i 13 . . . . 5 (𝑃 ∈ ℙ → ℤ ∈ (SubMnd‘𝑇))
71 f1oi 6335 . . . . . . . 8 ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))–1-1-onto→(1...(𝑃 − 1))
72 f1of 6298 . . . . . . . 8 (( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))–1-1-onto→(1...(𝑃 − 1)) → ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶(1...(𝑃 − 1)))
7371, 72ax-mp 5 . . . . . . 7 ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶(1...(𝑃 − 1))
749ssriv 3748 . . . . . . 7 (1...(𝑃 − 1)) ⊆ ℤ
75 fss 6217 . . . . . . 7 ((( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶(1...(𝑃 − 1)) ∧ (1...(𝑃 − 1)) ⊆ ℤ) → ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶ℤ)
7673, 74, 75mp2an 710 . . . . . 6 ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶ℤ
7776a1i 11 . . . . 5 (𝑃 ∈ ℙ → ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶ℤ)
78 1ex 10227 . . . . . . 7 1 ∈ V
7978a1i 11 . . . . . 6 (𝑃 ∈ ℙ → 1 ∈ V)
8077, 67, 79fdmfifsupp 8450 . . . . 5 (𝑃 ∈ ℙ → ( I ↾ (1...(𝑃 − 1))) finSupp 1)
8163, 66, 67, 70, 77, 80gsumsubmcl 18519 . . . 4 (𝑃 ∈ ℙ → (𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) ∈ ℤ)
82 1z 11599 . . . . 5 1 ∈ ℤ
83 znegcl 11604 . . . . 5 (1 ∈ ℤ → -1 ∈ ℤ)
8482, 83mp1i 13 . . . 4 (𝑃 ∈ ℙ → -1 ∈ ℤ)
85 moddvds 15193 . . . 4 ((𝑃 ∈ ℕ ∧ (𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) ∈ ℤ ∧ -1 ∈ ℤ) → (((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃) = (-1 mod 𝑃) ↔ 𝑃 ∥ ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) − -1)))
8611, 81, 84, 85syl3anc 1477 . . 3 (𝑃 ∈ ℙ → (((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃) = (-1 mod 𝑃) ↔ 𝑃 ∥ ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) − -1)))
8761, 86mpbid 222 . 2 (𝑃 ∈ ℙ → 𝑃 ∥ ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) − -1))
88 fcoi1 6239 . . . . . . . . . 10 (( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶(1...(𝑃 − 1)) → (( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1)))) = ( I ↾ (1...(𝑃 − 1))))
8973, 88ax-mp 5 . . . . . . . . 9 (( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1)))) = ( I ↾ (1...(𝑃 − 1)))
9089fveq1i 6353 . . . . . . . 8 ((( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1))))‘𝑘) = (( I ↾ (1...(𝑃 − 1)))‘𝑘)
91 fvres 6368 . . . . . . . 8 (𝑘 ∈ (1...(𝑃 − 1)) → (( I ↾ (1...(𝑃 − 1)))‘𝑘) = ( I ‘𝑘))
9290, 91syl5eq 2806 . . . . . . 7 (𝑘 ∈ (1...(𝑃 − 1)) → ((( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1))))‘𝑘) = ( I ‘𝑘))
9392adantl 473 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ (1...(𝑃 − 1))) → ((( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1))))‘𝑘) = ( I ‘𝑘))
945, 93seqfveq 13019 . . . . 5 (𝑃 ∈ ℙ → (seq1( · , (( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1)))))‘(𝑃 − 1)) = (seq1( · , I )‘(𝑃 − 1)))
95 cnfldbas 19952 . . . . . . 7 ℂ = (Base‘ℂfld)
9651, 95mgpbas 18695 . . . . . 6 ℂ = (Base‘𝑇)
97 cnfldmul 19954 . . . . . . 7 · = (.r‘ℂfld)
9851, 97mgpplusg 18693 . . . . . 6 · = (+g𝑇)
99 eqid 2760 . . . . . 6 (Cntz‘𝑇) = (Cntz‘𝑇)
100 cnring 19970 . . . . . . 7 fld ∈ Ring
10151ringmgp 18753 . . . . . . 7 (ℂfld ∈ Ring → 𝑇 ∈ Mnd)
102100, 101mp1i 13 . . . . . 6 (𝑃 ∈ ℙ → 𝑇 ∈ Mnd)
103 zsscn 11577 . . . . . . . 8 ℤ ⊆ ℂ
104 fss 6217 . . . . . . . 8 ((( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶ℤ ∧ ℤ ⊆ ℂ) → ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶ℂ)
10576, 103, 104mp2an 710 . . . . . . 7 ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶ℂ
106105a1i 11 . . . . . 6 (𝑃 ∈ ℙ → ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶ℂ)
10796, 99, 66, 106cntzcmnf 18448 . . . . . 6 (𝑃 ∈ ℙ → ran ( I ↾ (1...(𝑃 − 1))) ⊆ ((Cntz‘𝑇)‘ran ( I ↾ (1...(𝑃 − 1)))))
108 f1of1 6297 . . . . . . 7 (( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))–1-1-onto→(1...(𝑃 − 1)) → ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))–1-1→(1...(𝑃 − 1)))
10971, 108mp1i 13 . . . . . 6 (𝑃 ∈ ℙ → ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))–1-1→(1...(𝑃 − 1)))
110 suppssdm 7476 . . . . . . . . 9 (( I ↾ (1...(𝑃 − 1))) supp 1) ⊆ dom ( I ↾ (1...(𝑃 − 1)))
111 dmresi 5615 . . . . . . . . 9 dom ( I ↾ (1...(𝑃 − 1))) = (1...(𝑃 − 1))
112110, 111sseqtri 3778 . . . . . . . 8 (( I ↾ (1...(𝑃 − 1))) supp 1) ⊆ (1...(𝑃 − 1))
113 rnresi 5637 . . . . . . . 8 ran ( I ↾ (1...(𝑃 − 1))) = (1...(𝑃 − 1))
114112, 113sseqtr4i 3779 . . . . . . 7 (( I ↾ (1...(𝑃 − 1))) supp 1) ⊆ ran ( I ↾ (1...(𝑃 − 1)))
115114a1i 11 . . . . . 6 (𝑃 ∈ ℙ → (( I ↾ (1...(𝑃 − 1))) supp 1) ⊆ ran ( I ↾ (1...(𝑃 − 1))))
116 eqid 2760 . . . . . 6 ((( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1)))) supp 1) = ((( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1)))) supp 1)
11796, 63, 98, 99, 102, 67, 106, 107, 3, 109, 115, 116gsumval3 18508 . . . . 5 (𝑃 ∈ ℙ → (𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) = (seq1( · , (( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1)))))‘(𝑃 − 1)))
118 facnn 13256 . . . . . 6 ((𝑃 − 1) ∈ ℕ → (!‘(𝑃 − 1)) = (seq1( · , I )‘(𝑃 − 1)))
1193, 118syl 17 . . . . 5 (𝑃 ∈ ℙ → (!‘(𝑃 − 1)) = (seq1( · , I )‘(𝑃 − 1)))
12094, 117, 1193eqtr4d 2804 . . . 4 (𝑃 ∈ ℙ → (𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) = (!‘(𝑃 − 1)))
121120oveq1d 6828 . . 3 (𝑃 ∈ ℙ → ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) − -1) = ((!‘(𝑃 − 1)) − -1))
122 nnm1nn0 11526 . . . . . . 7 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
12311, 122syl 17 . . . . . 6 (𝑃 ∈ ℙ → (𝑃 − 1) ∈ ℕ0)
124 faccl 13264 . . . . . 6 ((𝑃 − 1) ∈ ℕ0 → (!‘(𝑃 − 1)) ∈ ℕ)
125123, 124syl 17 . . . . 5 (𝑃 ∈ ℙ → (!‘(𝑃 − 1)) ∈ ℕ)
126125nncnd 11228 . . . 4 (𝑃 ∈ ℙ → (!‘(𝑃 − 1)) ∈ ℂ)
127 ax-1cn 10186 . . . 4 1 ∈ ℂ
128 subneg 10522 . . . 4 (((!‘(𝑃 − 1)) ∈ ℂ ∧ 1 ∈ ℂ) → ((!‘(𝑃 − 1)) − -1) = ((!‘(𝑃 − 1)) + 1))
129126, 127, 128sylancl 697 . . 3 (𝑃 ∈ ℙ → ((!‘(𝑃 − 1)) − -1) = ((!‘(𝑃 − 1)) + 1))
130121, 129eqtrd 2794 . 2 (𝑃 ∈ ℙ → ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) − -1) = ((!‘(𝑃 − 1)) + 1))
13187, 130breqtrd 4830 1 (𝑃 ∈ ℙ → 𝑃 ∥ ((!‘(𝑃 − 1)) + 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072  wal 1630   = wceq 1632  wcel 2139  wral 3050  {crab 3054  Vcvv 3340  wss 3715  wpss 3716  𝒫 cpw 4302   class class class wbr 4804   I cid 5173  dom cdm 5266  ran crn 5267  cres 5268  ccom 5270  wf 6045  1-1wf1 6046  1-1-ontowf1o 6048  cfv 6049  (class class class)co 6813   supp csupp 7463  Fincfn 8121  cc 10126  1c1 10129   + caddc 10131   · cmul 10133  cmin 10458  -cneg 10459  cn 11212  2c2 11262  0cn0 11484  cz 11569  cuz 11879  ...cfz 12519   mod cmo 12862  seqcseq 12995  cexp 13054  !cfa 13254  cdvds 15182  cprime 15587   Σg cgsu 16303  Mndcmnd 17495  SubMndcsubmnd 17535  Cntzccntz 17948  CMndccmn 18393  mulGrpcmgp 18689  Ringcrg 18747  CRingccrg 18748  SubRingcsubrg 18978  fldccnfld 19948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-xnn0 11556  df-z 11570  df-dec 11686  df-uz 11880  df-rp 12026  df-fz 12520  df-fzo 12660  df-fl 12787  df-mod 12863  df-seq 12996  df-exp 13055  df-fac 13255  df-hash 13312  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-dvds 15183  df-gcd 15419  df-prm 15588  df-phi 15673  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-0g 16304  df-gsum 16305  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-grp 17626  df-minusg 17627  df-mulg 17742  df-subg 17792  df-cntz 17950  df-cmn 18395  df-mgp 18690  df-ur 18702  df-ring 18749  df-cring 18750  df-subrg 18980  df-cnfld 19949
This theorem is referenced by:  wilth  24996
  Copyright terms: Public domain W3C validator