MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wilthlem3 Structured version   Visualization version   GIF version

Theorem wilthlem3 24777
Description: Lemma for wilth 24778. Here we round out the argument of wilthlem2 24776 with the final step of the induction. The induction argument shows that every subset of 1...(𝑃 − 1) that is closed under inverse and contains 𝑃 − 1 multiplies to -1 mod 𝑃, and clearly 1...(𝑃 − 1) itself is such a set. Thus, the product of all the elements is -1, and all that is left is to translate the group sum notation (which we used for its unordered summing capabilities) into an ordered sequence to match the definition of the factorial. (Contributed by Mario Carneiro, 24-Jan-2015.) (Proof shortened by AV, 27-Jul-2019.)
Hypotheses
Ref Expression
wilthlem.t 𝑇 = (mulGrp‘ℂfld)
wilthlem.a 𝐴 = {𝑥 ∈ 𝒫 (1...(𝑃 − 1)) ∣ ((𝑃 − 1) ∈ 𝑥 ∧ ∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥)}
Assertion
Ref Expression
wilthlem3 (𝑃 ∈ ℙ → 𝑃 ∥ ((!‘(𝑃 − 1)) + 1))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑃,𝑦   𝑥,𝑇,𝑦

Proof of Theorem wilthlem3
Dummy variables 𝑡 𝑠 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmuz2 15389 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
2 uz2m1nn 11748 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → (𝑃 − 1) ∈ ℕ)
31, 2syl 17 . . . . . . 7 (𝑃 ∈ ℙ → (𝑃 − 1) ∈ ℕ)
4 nnuz 11708 . . . . . . 7 ℕ = (ℤ‘1)
53, 4syl6eleq 2709 . . . . . 6 (𝑃 ∈ ℙ → (𝑃 − 1) ∈ (ℤ‘1))
6 eluzfz2 12334 . . . . . 6 ((𝑃 − 1) ∈ (ℤ‘1) → (𝑃 − 1) ∈ (1...(𝑃 − 1)))
75, 6syl 17 . . . . 5 (𝑃 ∈ ℙ → (𝑃 − 1) ∈ (1...(𝑃 − 1)))
8 simpl 473 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℙ)
9 elfzelz 12327 . . . . . . . . 9 (𝑦 ∈ (1...(𝑃 − 1)) → 𝑦 ∈ ℤ)
109adantl 482 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ (1...(𝑃 − 1))) → 𝑦 ∈ ℤ)
11 prmnn 15369 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
12 fzm1ndvds 15025 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ 𝑦 ∈ (1...(𝑃 − 1))) → ¬ 𝑃𝑦)
1311, 12sylan 488 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ (1...(𝑃 − 1))) → ¬ 𝑃𝑦)
14 eqid 2620 . . . . . . . . 9 ((𝑦↑(𝑃 − 2)) mod 𝑃) = ((𝑦↑(𝑃 − 2)) mod 𝑃)
1514prmdiv 15471 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ ℤ ∧ ¬ 𝑃𝑦) → (((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑦 · ((𝑦↑(𝑃 − 2)) mod 𝑃)) − 1)))
168, 10, 13, 15syl3anc 1324 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ (1...(𝑃 − 1))) → (((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑦 · ((𝑦↑(𝑃 − 2)) mod 𝑃)) − 1)))
1716simpld 475 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ (1...(𝑃 − 1))) → ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)))
1817ralrimiva 2963 . . . . 5 (𝑃 ∈ ℙ → ∀𝑦 ∈ (1...(𝑃 − 1))((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)))
19 ovex 6663 . . . . . . 7 (1...(𝑃 − 1)) ∈ V
2019pwid 4165 . . . . . 6 (1...(𝑃 − 1)) ∈ 𝒫 (1...(𝑃 − 1))
21 eleq2 2688 . . . . . . . 8 (𝑥 = (1...(𝑃 − 1)) → ((𝑃 − 1) ∈ 𝑥 ↔ (𝑃 − 1) ∈ (1...(𝑃 − 1))))
22 eleq2 2688 . . . . . . . . 9 (𝑥 = (1...(𝑃 − 1)) → (((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥 ↔ ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1))))
2322raleqbi1dv 3141 . . . . . . . 8 (𝑥 = (1...(𝑃 − 1)) → (∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥 ↔ ∀𝑦 ∈ (1...(𝑃 − 1))((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1))))
2421, 23anbi12d 746 . . . . . . 7 (𝑥 = (1...(𝑃 − 1)) → (((𝑃 − 1) ∈ 𝑥 ∧ ∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥) ↔ ((𝑃 − 1) ∈ (1...(𝑃 − 1)) ∧ ∀𝑦 ∈ (1...(𝑃 − 1))((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)))))
25 wilthlem.a . . . . . . 7 𝐴 = {𝑥 ∈ 𝒫 (1...(𝑃 − 1)) ∣ ((𝑃 − 1) ∈ 𝑥 ∧ ∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥)}
2624, 25elrab2 3360 . . . . . 6 ((1...(𝑃 − 1)) ∈ 𝐴 ↔ ((1...(𝑃 − 1)) ∈ 𝒫 (1...(𝑃 − 1)) ∧ ((𝑃 − 1) ∈ (1...(𝑃 − 1)) ∧ ∀𝑦 ∈ (1...(𝑃 − 1))((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)))))
2720, 26mpbiran 952 . . . . 5 ((1...(𝑃 − 1)) ∈ 𝐴 ↔ ((𝑃 − 1) ∈ (1...(𝑃 − 1)) ∧ ∀𝑦 ∈ (1...(𝑃 − 1))((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1))))
287, 18, 27sylanbrc 697 . . . 4 (𝑃 ∈ ℙ → (1...(𝑃 − 1)) ∈ 𝐴)
29 fzfi 12754 . . . . 5 (1...(𝑃 − 1)) ∈ Fin
30 eleq1 2687 . . . . . . . 8 (𝑠 = 𝑡 → (𝑠𝐴𝑡𝐴))
31 reseq2 5380 . . . . . . . . . . 11 (𝑠 = 𝑡 → ( I ↾ 𝑠) = ( I ↾ 𝑡))
3231oveq2d 6651 . . . . . . . . . 10 (𝑠 = 𝑡 → (𝑇 Σg ( I ↾ 𝑠)) = (𝑇 Σg ( I ↾ 𝑡)))
3332oveq1d 6650 . . . . . . . . 9 (𝑠 = 𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = ((𝑇 Σg ( I ↾ 𝑡)) mod 𝑃))
3433eqeq1d 2622 . . . . . . . 8 (𝑠 = 𝑡 → (((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃) ↔ ((𝑇 Σg ( I ↾ 𝑡)) mod 𝑃) = (-1 mod 𝑃)))
3530, 34imbi12d 334 . . . . . . 7 (𝑠 = 𝑡 → ((𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) ↔ (𝑡𝐴 → ((𝑇 Σg ( I ↾ 𝑡)) mod 𝑃) = (-1 mod 𝑃))))
3635imbi2d 330 . . . . . 6 (𝑠 = 𝑡 → ((𝑃 ∈ ℙ → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃))) ↔ (𝑃 ∈ ℙ → (𝑡𝐴 → ((𝑇 Σg ( I ↾ 𝑡)) mod 𝑃) = (-1 mod 𝑃)))))
37 eleq1 2687 . . . . . . . 8 (𝑠 = (1...(𝑃 − 1)) → (𝑠𝐴 ↔ (1...(𝑃 − 1)) ∈ 𝐴))
38 reseq2 5380 . . . . . . . . . . 11 (𝑠 = (1...(𝑃 − 1)) → ( I ↾ 𝑠) = ( I ↾ (1...(𝑃 − 1))))
3938oveq2d 6651 . . . . . . . . . 10 (𝑠 = (1...(𝑃 − 1)) → (𝑇 Σg ( I ↾ 𝑠)) = (𝑇 Σg ( I ↾ (1...(𝑃 − 1)))))
4039oveq1d 6650 . . . . . . . . 9 (𝑠 = (1...(𝑃 − 1)) → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃))
4140eqeq1d 2622 . . . . . . . 8 (𝑠 = (1...(𝑃 − 1)) → (((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃) ↔ ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃) = (-1 mod 𝑃)))
4237, 41imbi12d 334 . . . . . . 7 (𝑠 = (1...(𝑃 − 1)) → ((𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) ↔ ((1...(𝑃 − 1)) ∈ 𝐴 → ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃) = (-1 mod 𝑃))))
4342imbi2d 330 . . . . . 6 (𝑠 = (1...(𝑃 − 1)) → ((𝑃 ∈ ℙ → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃))) ↔ (𝑃 ∈ ℙ → ((1...(𝑃 − 1)) ∈ 𝐴 → ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃) = (-1 mod 𝑃)))))
44 bi2.04 376 . . . . . . . . . . 11 ((𝑠𝑡 → (𝑃 ∈ ℙ → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))) ↔ (𝑃 ∈ ℙ → (𝑠𝑡 → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))))
45 pm2.27 42 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → ((𝑃 ∈ ℙ → (𝑠𝑡 → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → (𝑠𝑡 → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))))
4645com34 91 . . . . . . . . . . 11 (𝑃 ∈ ℙ → ((𝑃 ∈ ℙ → (𝑠𝑡 → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → (𝑠𝐴 → (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))))
4744, 46syl5bi 232 . . . . . . . . . 10 (𝑃 ∈ ℙ → ((𝑠𝑡 → (𝑃 ∈ ℙ → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → (𝑠𝐴 → (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))))
4847alimdv 1843 . . . . . . . . 9 (𝑃 ∈ ℙ → (∀𝑠(𝑠𝑡 → (𝑃 ∈ ℙ → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → ∀𝑠(𝑠𝐴 → (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))))
49 df-ral 2914 . . . . . . . . 9 (∀𝑠𝐴 (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) ↔ ∀𝑠(𝑠𝐴 → (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃))))
5048, 49syl6ibr 242 . . . . . . . 8 (𝑃 ∈ ℙ → (∀𝑠(𝑠𝑡 → (𝑃 ∈ ℙ → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → ∀𝑠𝐴 (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃))))
51 wilthlem.t . . . . . . . . . 10 𝑇 = (mulGrp‘ℂfld)
52 simp1 1059 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ ∀𝑠𝐴 (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) ∧ 𝑡𝐴) → 𝑃 ∈ ℙ)
53 simp3 1061 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ ∀𝑠𝐴 (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) ∧ 𝑡𝐴) → 𝑡𝐴)
54 simp2 1060 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ ∀𝑠𝐴 (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) ∧ 𝑡𝐴) → ∀𝑠𝐴 (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))
5551, 25, 52, 53, 54wilthlem2 24776 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ ∀𝑠𝐴 (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) ∧ 𝑡𝐴) → ((𝑇 Σg ( I ↾ 𝑡)) mod 𝑃) = (-1 mod 𝑃))
56553exp 1262 . . . . . . . 8 (𝑃 ∈ ℙ → (∀𝑠𝐴 (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) → (𝑡𝐴 → ((𝑇 Σg ( I ↾ 𝑡)) mod 𝑃) = (-1 mod 𝑃))))
5750, 56syldc 48 . . . . . . 7 (∀𝑠(𝑠𝑡 → (𝑃 ∈ ℙ → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → (𝑃 ∈ ℙ → (𝑡𝐴 → ((𝑇 Σg ( I ↾ 𝑡)) mod 𝑃) = (-1 mod 𝑃))))
5857a1i 11 . . . . . 6 (𝑡 ∈ Fin → (∀𝑠(𝑠𝑡 → (𝑃 ∈ ℙ → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → (𝑃 ∈ ℙ → (𝑡𝐴 → ((𝑇 Σg ( I ↾ 𝑡)) mod 𝑃) = (-1 mod 𝑃)))))
5936, 43, 58findcard3 8188 . . . . 5 ((1...(𝑃 − 1)) ∈ Fin → (𝑃 ∈ ℙ → ((1...(𝑃 − 1)) ∈ 𝐴 → ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃) = (-1 mod 𝑃))))
6029, 59ax-mp 5 . . . 4 (𝑃 ∈ ℙ → ((1...(𝑃 − 1)) ∈ 𝐴 → ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃) = (-1 mod 𝑃)))
6128, 60mpd 15 . . 3 (𝑃 ∈ ℙ → ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃) = (-1 mod 𝑃))
62 cnfld1 19752 . . . . . 6 1 = (1r‘ℂfld)
6351, 62ringidval 18484 . . . . 5 1 = (0g𝑇)
64 cncrng 19748 . . . . . 6 fld ∈ CRing
6551crngmgp 18536 . . . . . 6 (ℂfld ∈ CRing → 𝑇 ∈ CMnd)
6664, 65mp1i 13 . . . . 5 (𝑃 ∈ ℙ → 𝑇 ∈ CMnd)
6729a1i 11 . . . . 5 (𝑃 ∈ ℙ → (1...(𝑃 − 1)) ∈ Fin)
68 zsubrg 19780 . . . . . 6 ℤ ∈ (SubRing‘ℂfld)
6951subrgsubm 18774 . . . . . 6 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubMnd‘𝑇))
7068, 69mp1i 13 . . . . 5 (𝑃 ∈ ℙ → ℤ ∈ (SubMnd‘𝑇))
71 f1oi 6161 . . . . . . . 8 ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))–1-1-onto→(1...(𝑃 − 1))
72 f1of 6124 . . . . . . . 8 (( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))–1-1-onto→(1...(𝑃 − 1)) → ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶(1...(𝑃 − 1)))
7371, 72ax-mp 5 . . . . . . 7 ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶(1...(𝑃 − 1))
749ssriv 3599 . . . . . . 7 (1...(𝑃 − 1)) ⊆ ℤ
75 fss 6043 . . . . . . 7 ((( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶(1...(𝑃 − 1)) ∧ (1...(𝑃 − 1)) ⊆ ℤ) → ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶ℤ)
7673, 74, 75mp2an 707 . . . . . 6 ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶ℤ
7776a1i 11 . . . . 5 (𝑃 ∈ ℙ → ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶ℤ)
78 1ex 10020 . . . . . . 7 1 ∈ V
7978a1i 11 . . . . . 6 (𝑃 ∈ ℙ → 1 ∈ V)
8077, 67, 79fdmfifsupp 8270 . . . . 5 (𝑃 ∈ ℙ → ( I ↾ (1...(𝑃 − 1))) finSupp 1)
8163, 66, 67, 70, 77, 80gsumsubmcl 18300 . . . 4 (𝑃 ∈ ℙ → (𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) ∈ ℤ)
82 1z 11392 . . . . 5 1 ∈ ℤ
83 znegcl 11397 . . . . 5 (1 ∈ ℤ → -1 ∈ ℤ)
8482, 83mp1i 13 . . . 4 (𝑃 ∈ ℙ → -1 ∈ ℤ)
85 moddvds 14972 . . . 4 ((𝑃 ∈ ℕ ∧ (𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) ∈ ℤ ∧ -1 ∈ ℤ) → (((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃) = (-1 mod 𝑃) ↔ 𝑃 ∥ ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) − -1)))
8611, 81, 84, 85syl3anc 1324 . . 3 (𝑃 ∈ ℙ → (((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃) = (-1 mod 𝑃) ↔ 𝑃 ∥ ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) − -1)))
8761, 86mpbid 222 . 2 (𝑃 ∈ ℙ → 𝑃 ∥ ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) − -1))
88 fcoi1 6065 . . . . . . . . . 10 (( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶(1...(𝑃 − 1)) → (( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1)))) = ( I ↾ (1...(𝑃 − 1))))
8973, 88ax-mp 5 . . . . . . . . 9 (( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1)))) = ( I ↾ (1...(𝑃 − 1)))
9089fveq1i 6179 . . . . . . . 8 ((( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1))))‘𝑘) = (( I ↾ (1...(𝑃 − 1)))‘𝑘)
91 fvres 6194 . . . . . . . 8 (𝑘 ∈ (1...(𝑃 − 1)) → (( I ↾ (1...(𝑃 − 1)))‘𝑘) = ( I ‘𝑘))
9290, 91syl5eq 2666 . . . . . . 7 (𝑘 ∈ (1...(𝑃 − 1)) → ((( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1))))‘𝑘) = ( I ‘𝑘))
9392adantl 482 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ (1...(𝑃 − 1))) → ((( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1))))‘𝑘) = ( I ‘𝑘))
945, 93seqfveq 12808 . . . . 5 (𝑃 ∈ ℙ → (seq1( · , (( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1)))))‘(𝑃 − 1)) = (seq1( · , I )‘(𝑃 − 1)))
95 cnfldbas 19731 . . . . . . 7 ℂ = (Base‘ℂfld)
9651, 95mgpbas 18476 . . . . . 6 ℂ = (Base‘𝑇)
97 cnfldmul 19733 . . . . . . 7 · = (.r‘ℂfld)
9851, 97mgpplusg 18474 . . . . . 6 · = (+g𝑇)
99 eqid 2620 . . . . . 6 (Cntz‘𝑇) = (Cntz‘𝑇)
100 cnring 19749 . . . . . . 7 fld ∈ Ring
10151ringmgp 18534 . . . . . . 7 (ℂfld ∈ Ring → 𝑇 ∈ Mnd)
102100, 101mp1i 13 . . . . . 6 (𝑃 ∈ ℙ → 𝑇 ∈ Mnd)
103 zsscn 11370 . . . . . . . 8 ℤ ⊆ ℂ
104 fss 6043 . . . . . . . 8 ((( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶ℤ ∧ ℤ ⊆ ℂ) → ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶ℂ)
10576, 103, 104mp2an 707 . . . . . . 7 ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶ℂ
106105a1i 11 . . . . . 6 (𝑃 ∈ ℙ → ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶ℂ)
10796, 99, 66, 106cntzcmnf 18229 . . . . . 6 (𝑃 ∈ ℙ → ran ( I ↾ (1...(𝑃 − 1))) ⊆ ((Cntz‘𝑇)‘ran ( I ↾ (1...(𝑃 − 1)))))
108 f1of1 6123 . . . . . . 7 (( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))–1-1-onto→(1...(𝑃 − 1)) → ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))–1-1→(1...(𝑃 − 1)))
10971, 108mp1i 13 . . . . . 6 (𝑃 ∈ ℙ → ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))–1-1→(1...(𝑃 − 1)))
110 suppssdm 7293 . . . . . . . . 9 (( I ↾ (1...(𝑃 − 1))) supp 1) ⊆ dom ( I ↾ (1...(𝑃 − 1)))
111 dmresi 5445 . . . . . . . . 9 dom ( I ↾ (1...(𝑃 − 1))) = (1...(𝑃 − 1))
112110, 111sseqtri 3629 . . . . . . . 8 (( I ↾ (1...(𝑃 − 1))) supp 1) ⊆ (1...(𝑃 − 1))
113 rnresi 5467 . . . . . . . 8 ran ( I ↾ (1...(𝑃 − 1))) = (1...(𝑃 − 1))
114112, 113sseqtr4i 3630 . . . . . . 7 (( I ↾ (1...(𝑃 − 1))) supp 1) ⊆ ran ( I ↾ (1...(𝑃 − 1)))
115114a1i 11 . . . . . 6 (𝑃 ∈ ℙ → (( I ↾ (1...(𝑃 − 1))) supp 1) ⊆ ran ( I ↾ (1...(𝑃 − 1))))
116 eqid 2620 . . . . . 6 ((( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1)))) supp 1) = ((( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1)))) supp 1)
11796, 63, 98, 99, 102, 67, 106, 107, 3, 109, 115, 116gsumval3 18289 . . . . 5 (𝑃 ∈ ℙ → (𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) = (seq1( · , (( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1)))))‘(𝑃 − 1)))
118 facnn 13045 . . . . . 6 ((𝑃 − 1) ∈ ℕ → (!‘(𝑃 − 1)) = (seq1( · , I )‘(𝑃 − 1)))
1193, 118syl 17 . . . . 5 (𝑃 ∈ ℙ → (!‘(𝑃 − 1)) = (seq1( · , I )‘(𝑃 − 1)))
12094, 117, 1193eqtr4d 2664 . . . 4 (𝑃 ∈ ℙ → (𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) = (!‘(𝑃 − 1)))
121120oveq1d 6650 . . 3 (𝑃 ∈ ℙ → ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) − -1) = ((!‘(𝑃 − 1)) − -1))
122 nnm1nn0 11319 . . . . . . 7 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
12311, 122syl 17 . . . . . 6 (𝑃 ∈ ℙ → (𝑃 − 1) ∈ ℕ0)
124 faccl 13053 . . . . . 6 ((𝑃 − 1) ∈ ℕ0 → (!‘(𝑃 − 1)) ∈ ℕ)
125123, 124syl 17 . . . . 5 (𝑃 ∈ ℙ → (!‘(𝑃 − 1)) ∈ ℕ)
126125nncnd 11021 . . . 4 (𝑃 ∈ ℙ → (!‘(𝑃 − 1)) ∈ ℂ)
127 ax-1cn 9979 . . . 4 1 ∈ ℂ
128 subneg 10315 . . . 4 (((!‘(𝑃 − 1)) ∈ ℂ ∧ 1 ∈ ℂ) → ((!‘(𝑃 − 1)) − -1) = ((!‘(𝑃 − 1)) + 1))
129126, 127, 128sylancl 693 . . 3 (𝑃 ∈ ℙ → ((!‘(𝑃 − 1)) − -1) = ((!‘(𝑃 − 1)) + 1))
130121, 129eqtrd 2654 . 2 (𝑃 ∈ ℙ → ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) − -1) = ((!‘(𝑃 − 1)) + 1))
13187, 130breqtrd 4670 1 (𝑃 ∈ ℙ → 𝑃 ∥ ((!‘(𝑃 − 1)) + 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036  wal 1479   = wceq 1481  wcel 1988  wral 2909  {crab 2913  Vcvv 3195  wss 3567  wpss 3568  𝒫 cpw 4149   class class class wbr 4644   I cid 5013  dom cdm 5104  ran crn 5105  cres 5106  ccom 5108  wf 5872  1-1wf1 5873  1-1-ontowf1o 5875  cfv 5876  (class class class)co 6635   supp csupp 7280  Fincfn 7940  cc 9919  1c1 9922   + caddc 9924   · cmul 9926  cmin 10251  -cneg 10252  cn 11005  2c2 11055  0cn0 11277  cz 11362  cuz 11672  ...cfz 12311   mod cmo 12651  seqcseq 12784  cexp 12843  !cfa 13043  cdvds 14964  cprime 15366   Σg cgsu 16082  Mndcmnd 17275  SubMndcsubmnd 17315  Cntzccntz 17729  CMndccmn 18174  mulGrpcmgp 18470  Ringcrg 18528  CRingccrg 18529  SubRingcsubrg 18757  fldccnfld 19727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999  ax-addf 10000  ax-mulf 10001
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-iin 4514  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-of 6882  df-om 7051  df-1st 7153  df-2nd 7154  df-supp 7281  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-2o 7546  df-oadd 7549  df-er 7727  df-map 7844  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-fsupp 8261  df-sup 8333  df-inf 8334  df-oi 8400  df-card 8750  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-xnn0 11349  df-z 11363  df-dec 11479  df-uz 11673  df-rp 11818  df-fz 12312  df-fzo 12450  df-fl 12576  df-mod 12652  df-seq 12785  df-exp 12844  df-fac 13044  df-hash 13101  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-dvds 14965  df-gcd 15198  df-prm 15367  df-phi 15452  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-mulr 15936  df-starv 15937  df-tset 15941  df-ple 15942  df-ds 15945  df-unif 15946  df-0g 16083  df-gsum 16084  df-mre 16227  df-mrc 16228  df-acs 16230  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-submnd 17317  df-grp 17406  df-minusg 17407  df-mulg 17522  df-subg 17572  df-cntz 17731  df-cmn 18176  df-mgp 18471  df-ur 18483  df-ring 18530  df-cring 18531  df-subrg 18759  df-cnfld 19728
This theorem is referenced by:  wilth  24778
  Copyright terms: Public domain W3C validator