MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrlem13 Structured version   Visualization version   GIF version

Theorem wfrlem13 7472
Description: Lemma for well-founded recursion. From here through wfrlem16 7475, we aim to prove that dom 𝐹 = 𝐴. We do this by supposing that there is an element 𝑧 of 𝐴 that is not in dom 𝐹. We then define 𝐶 by extending dom 𝐹 with the appropriate value at 𝑧. We then show that 𝑧 cannot be an 𝑅 minimal element of (𝐴 ∖ dom 𝐹), meaning that (𝐴 ∖ dom 𝐹) must be empty, so dom 𝐹 = 𝐴. Here, we show that 𝐶 is a function extending the domain of 𝐹 by one. (Contributed by Scott Fenton, 21-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
wfrlem13.1 𝑅 We 𝐴
wfrlem13.2 𝑅 Se 𝐴
wfrlem13.3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
wfrlem13.4 𝐶 = (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
Assertion
Ref Expression
wfrlem13 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝐶 Fn (dom 𝐹 ∪ {𝑧}))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐹   𝑧,𝑅
Allowed substitution hints:   𝐶(𝑧)   𝐺(𝑧)

Proof of Theorem wfrlem13
StepHypRef Expression
1 wfrlem13.1 . . . . . 6 𝑅 We 𝐴
2 wfrlem13.2 . . . . . 6 𝑅 Se 𝐴
3 wfrlem13.3 . . . . . 6 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
41, 2, 3wfrfun 7470 . . . . 5 Fun 𝐹
5 vex 3234 . . . . . 6 𝑧 ∈ V
6 fvex 6239 . . . . . 6 (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∈ V
75, 6funsn 5977 . . . . 5 Fun {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}
84, 7pm3.2i 470 . . . 4 (Fun 𝐹 ∧ Fun {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
96dmsnop 5645 . . . . . 6 dom {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} = {𝑧}
109ineq2i 3844 . . . . 5 (dom 𝐹 ∩ dom {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = (dom 𝐹 ∩ {𝑧})
11 eldifn 3766 . . . . . 6 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ¬ 𝑧 ∈ dom 𝐹)
12 disjsn 4278 . . . . . 6 ((dom 𝐹 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ dom 𝐹)
1311, 12sylibr 224 . . . . 5 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (dom 𝐹 ∩ {𝑧}) = ∅)
1410, 13syl5eq 2697 . . . 4 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (dom 𝐹 ∩ dom {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = ∅)
15 funun 5970 . . . 4 (((Fun 𝐹 ∧ Fun {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) ∧ (dom 𝐹 ∩ dom {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = ∅) → Fun (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}))
168, 14, 15sylancr 696 . . 3 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → Fun (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}))
17 dmun 5363 . . . 4 dom (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = (dom 𝐹 ∪ dom {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
189uneq2i 3797 . . . 4 (dom 𝐹 ∪ dom {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = (dom 𝐹 ∪ {𝑧})
1917, 18eqtri 2673 . . 3 dom (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = (dom 𝐹 ∪ {𝑧})
2016, 19jctir 560 . 2 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (Fun (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) ∧ dom (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = (dom 𝐹 ∪ {𝑧})))
21 wfrlem13.4 . . . 4 𝐶 = (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
2221fneq1i 6023 . . 3 (𝐶 Fn (dom 𝐹 ∪ {𝑧}) ↔ (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) Fn (dom 𝐹 ∪ {𝑧}))
23 df-fn 5929 . . 3 ((𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) Fn (dom 𝐹 ∪ {𝑧}) ↔ (Fun (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) ∧ dom (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = (dom 𝐹 ∪ {𝑧})))
2422, 23bitri 264 . 2 (𝐶 Fn (dom 𝐹 ∪ {𝑧}) ↔ (Fun (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) ∧ dom (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = (dom 𝐹 ∪ {𝑧})))
2520, 24sylibr 224 1 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝐶 Fn (dom 𝐹 ∪ {𝑧}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1523  wcel 2030  cdif 3604  cun 3605  cin 3606  c0 3948  {csn 4210  cop 4216   Se wse 5100   We wwe 5101  dom cdm 5143  cres 5145  Predcpred 5717  Fun wfun 5920   Fn wfn 5921  cfv 5926  wrecscwrecs 7451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-iota 5889  df-fun 5928  df-fn 5929  df-fv 5934  df-wrecs 7452
This theorem is referenced by:  wfrlem14  7473  wfrlem15  7474
  Copyright terms: Public domain W3C validator