![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wfrlem13 | Structured version Visualization version GIF version |
Description: Lemma for well-founded recursion. From here through wfrlem16 7475, we aim to prove that dom 𝐹 = 𝐴. We do this by supposing that there is an element 𝑧 of 𝐴 that is not in dom 𝐹. We then define 𝐶 by extending dom 𝐹 with the appropriate value at 𝑧. We then show that 𝑧 cannot be an 𝑅 minimal element of (𝐴 ∖ dom 𝐹), meaning that (𝐴 ∖ dom 𝐹) must be empty, so dom 𝐹 = 𝐴. Here, we show that 𝐶 is a function extending the domain of 𝐹 by one. (Contributed by Scott Fenton, 21-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
Ref | Expression |
---|---|
wfrlem13.1 | ⊢ 𝑅 We 𝐴 |
wfrlem13.2 | ⊢ 𝑅 Se 𝐴 |
wfrlem13.3 | ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) |
wfrlem13.4 | ⊢ 𝐶 = (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) |
Ref | Expression |
---|---|
wfrlem13 | ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝐶 Fn (dom 𝐹 ∪ {𝑧})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wfrlem13.1 | . . . . . 6 ⊢ 𝑅 We 𝐴 | |
2 | wfrlem13.2 | . . . . . 6 ⊢ 𝑅 Se 𝐴 | |
3 | wfrlem13.3 | . . . . . 6 ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) | |
4 | 1, 2, 3 | wfrfun 7470 | . . . . 5 ⊢ Fun 𝐹 |
5 | vex 3234 | . . . . . 6 ⊢ 𝑧 ∈ V | |
6 | fvex 6239 | . . . . . 6 ⊢ (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∈ V | |
7 | 5, 6 | funsn 5977 | . . . . 5 ⊢ Fun {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉} |
8 | 4, 7 | pm3.2i 470 | . . . 4 ⊢ (Fun 𝐹 ∧ Fun {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) |
9 | 6 | dmsnop 5645 | . . . . . 6 ⊢ dom {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉} = {𝑧} |
10 | 9 | ineq2i 3844 | . . . . 5 ⊢ (dom 𝐹 ∩ dom {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = (dom 𝐹 ∩ {𝑧}) |
11 | eldifn 3766 | . . . . . 6 ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ¬ 𝑧 ∈ dom 𝐹) | |
12 | disjsn 4278 | . . . . . 6 ⊢ ((dom 𝐹 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ dom 𝐹) | |
13 | 11, 12 | sylibr 224 | . . . . 5 ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (dom 𝐹 ∩ {𝑧}) = ∅) |
14 | 10, 13 | syl5eq 2697 | . . . 4 ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (dom 𝐹 ∩ dom {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = ∅) |
15 | funun 5970 | . . . 4 ⊢ (((Fun 𝐹 ∧ Fun {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) ∧ (dom 𝐹 ∩ dom {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = ∅) → Fun (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉})) | |
16 | 8, 14, 15 | sylancr 696 | . . 3 ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → Fun (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉})) |
17 | dmun 5363 | . . . 4 ⊢ dom (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = (dom 𝐹 ∪ dom {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) | |
18 | 9 | uneq2i 3797 | . . . 4 ⊢ (dom 𝐹 ∪ dom {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = (dom 𝐹 ∪ {𝑧}) |
19 | 17, 18 | eqtri 2673 | . . 3 ⊢ dom (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = (dom 𝐹 ∪ {𝑧}) |
20 | 16, 19 | jctir 560 | . 2 ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (Fun (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) ∧ dom (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = (dom 𝐹 ∪ {𝑧}))) |
21 | wfrlem13.4 | . . . 4 ⊢ 𝐶 = (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) | |
22 | 21 | fneq1i 6023 | . . 3 ⊢ (𝐶 Fn (dom 𝐹 ∪ {𝑧}) ↔ (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) Fn (dom 𝐹 ∪ {𝑧})) |
23 | df-fn 5929 | . . 3 ⊢ ((𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) Fn (dom 𝐹 ∪ {𝑧}) ↔ (Fun (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) ∧ dom (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = (dom 𝐹 ∪ {𝑧}))) | |
24 | 22, 23 | bitri 264 | . 2 ⊢ (𝐶 Fn (dom 𝐹 ∪ {𝑧}) ↔ (Fun (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) ∧ dom (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = (dom 𝐹 ∪ {𝑧}))) |
25 | 20, 24 | sylibr 224 | 1 ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝐶 Fn (dom 𝐹 ∪ {𝑧})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∖ cdif 3604 ∪ cun 3605 ∩ cin 3606 ∅c0 3948 {csn 4210 〈cop 4216 Se wse 5100 We wwe 5101 dom cdm 5143 ↾ cres 5145 Predcpred 5717 Fun wfun 5920 Fn wfn 5921 ‘cfv 5926 wrecscwrecs 7451 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-iota 5889 df-fun 5928 df-fn 5929 df-fv 5934 df-wrecs 7452 |
This theorem is referenced by: wfrlem14 7473 wfrlem15 7474 |
Copyright terms: Public domain | W3C validator |