Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfr2 Structured version   Visualization version   GIF version

Theorem wfr2 7585
 Description: The Principle of Well-Founded Recursion, part 2 of 3. Next, we show that the value of 𝐹 at any 𝑋 ∈ 𝐴 is 𝐺 recursively applied to all "previous" values of 𝐹. (Contributed by Scott Fenton, 18-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
wfr2.1 𝑅 We 𝐴
wfr2.2 𝑅 Se 𝐴
wfr2.3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
wfr2 (𝑋𝐴 → (𝐹𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))

Proof of Theorem wfr2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 wfr2.1 . . . 4 𝑅 We 𝐴
2 wfr2.2 . . . 4 𝑅 Se 𝐴
3 wfr2.3 . . . 4 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
4 eqid 2769 . . . 4 (𝐹 ∪ {⟨𝑥, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑥)))⟩}) = (𝐹 ∪ {⟨𝑥, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑥)))⟩})
51, 2, 3, 4wfrlem16 7581 . . 3 dom 𝐹 = 𝐴
65eleq2i 2840 . 2 (𝑋 ∈ dom 𝐹𝑋𝐴)
71, 2, 3wfr2a 7583 . 2 (𝑋 ∈ dom 𝐹 → (𝐹𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))
86, 7sylbir 225 1 (𝑋𝐴 → (𝐹𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1629   ∈ wcel 2143   ∪ cun 3718  {csn 4313  ⟨cop 4319   Se wse 5205   We wwe 5206  dom cdm 5248   ↾ cres 5250  Predcpred 5821  ‘cfv 6030  wrecscwrecs 7556 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1868  ax-4 1883  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2145  ax-9 2152  ax-10 2172  ax-11 2188  ax-12 2201  ax-13 2406  ax-ext 2749  ax-rep 4901  ax-sep 4911  ax-nul 4919  ax-pow 4970  ax-pr 5033  ax-un 7094 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1070  df-3an 1071  df-tru 1632  df-ex 1851  df-nf 1856  df-sb 2048  df-eu 2620  df-mo 2621  df-clab 2756  df-cleq 2762  df-clel 2765  df-nfc 2900  df-ne 2942  df-ral 3064  df-rex 3065  df-reu 3066  df-rmo 3067  df-rab 3068  df-v 3350  df-sbc 3585  df-csb 3680  df-dif 3723  df-un 3725  df-in 3727  df-ss 3734  df-nul 4061  df-if 4223  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4572  df-iun 4653  df-br 4784  df-opab 4844  df-mpt 4861  df-id 5156  df-po 5169  df-so 5170  df-fr 5207  df-se 5208  df-we 5209  df-xp 5254  df-rel 5255  df-cnv 5256  df-co 5257  df-dm 5258  df-rn 5259  df-res 5260  df-ima 5261  df-pred 5822  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-wrecs 7557 This theorem is referenced by:  wfr3  7586  tfr2ALT  7648  bpolylem  14990
 Copyright terms: Public domain W3C validator