![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wfr2 | Structured version Visualization version GIF version |
Description: The Principle of Well-Founded Recursion, part 2 of 3. Next, we show that the value of 𝐹 at any 𝑋 ∈ 𝐴 is 𝐺 recursively applied to all "previous" values of 𝐹. (Contributed by Scott Fenton, 18-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
Ref | Expression |
---|---|
wfr2.1 | ⊢ 𝑅 We 𝐴 |
wfr2.2 | ⊢ 𝑅 Se 𝐴 |
wfr2.3 | ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) |
Ref | Expression |
---|---|
wfr2 | ⊢ (𝑋 ∈ 𝐴 → (𝐹‘𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wfr2.1 | . . . 4 ⊢ 𝑅 We 𝐴 | |
2 | wfr2.2 | . . . 4 ⊢ 𝑅 Se 𝐴 | |
3 | wfr2.3 | . . . 4 ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) | |
4 | eqid 2769 | . . . 4 ⊢ (𝐹 ∪ {〈𝑥, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑥)))〉}) = (𝐹 ∪ {〈𝑥, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑥)))〉}) | |
5 | 1, 2, 3, 4 | wfrlem16 7581 | . . 3 ⊢ dom 𝐹 = 𝐴 |
6 | 5 | eleq2i 2840 | . 2 ⊢ (𝑋 ∈ dom 𝐹 ↔ 𝑋 ∈ 𝐴) |
7 | 1, 2, 3 | wfr2a 7583 | . 2 ⊢ (𝑋 ∈ dom 𝐹 → (𝐹‘𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) |
8 | 6, 7 | sylbir 225 | 1 ⊢ (𝑋 ∈ 𝐴 → (𝐹‘𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1629 ∈ wcel 2143 ∪ cun 3718 {csn 4313 〈cop 4319 Se wse 5205 We wwe 5206 dom cdm 5248 ↾ cres 5250 Predcpred 5821 ‘cfv 6030 wrecscwrecs 7556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1868 ax-4 1883 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2145 ax-9 2152 ax-10 2172 ax-11 2188 ax-12 2201 ax-13 2406 ax-ext 2749 ax-rep 4901 ax-sep 4911 ax-nul 4919 ax-pow 4970 ax-pr 5033 ax-un 7094 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1070 df-3an 1071 df-tru 1632 df-ex 1851 df-nf 1856 df-sb 2048 df-eu 2620 df-mo 2621 df-clab 2756 df-cleq 2762 df-clel 2765 df-nfc 2900 df-ne 2942 df-ral 3064 df-rex 3065 df-reu 3066 df-rmo 3067 df-rab 3068 df-v 3350 df-sbc 3585 df-csb 3680 df-dif 3723 df-un 3725 df-in 3727 df-ss 3734 df-nul 4061 df-if 4223 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4572 df-iun 4653 df-br 4784 df-opab 4844 df-mpt 4861 df-id 5156 df-po 5169 df-so 5170 df-fr 5207 df-se 5208 df-we 5209 df-xp 5254 df-rel 5255 df-cnv 5256 df-co 5257 df-dm 5258 df-rn 5259 df-res 5260 df-ima 5261 df-pred 5822 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-wrecs 7557 |
This theorem is referenced by: wfr3 7586 tfr2ALT 7648 bpolylem 14990 |
Copyright terms: Public domain | W3C validator |