![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wfis3 | Structured version Visualization version GIF version |
Description: Well Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 29-Jan-2011.) |
Ref | Expression |
---|---|
wfis3.1 | ⊢ 𝑅 We 𝐴 |
wfis3.2 | ⊢ 𝑅 Se 𝐴 |
wfis3.3 | ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) |
wfis3.4 | ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜒)) |
wfis3.5 | ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) |
Ref | Expression |
---|---|
wfis3 | ⊢ (𝐵 ∈ 𝐴 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wfis3.4 | . 2 ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜒)) | |
2 | wfis3.1 | . . 3 ⊢ 𝑅 We 𝐴 | |
3 | wfis3.2 | . . 3 ⊢ 𝑅 Se 𝐴 | |
4 | wfis3.3 | . . 3 ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) | |
5 | wfis3.5 | . . 3 ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) | |
6 | 2, 3, 4, 5 | wfis2 5758 | . 2 ⊢ (𝑦 ∈ 𝐴 → 𝜑) |
7 | 1, 6 | vtoclga 3303 | 1 ⊢ (𝐵 ∈ 𝐴 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1523 ∈ wcel 2030 ∀wral 2941 Se wse 5100 We wwe 5101 Predcpred 5717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-cnv 5151 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 |
This theorem is referenced by: omsinds 7126 uzsinds 12826 |
Copyright terms: Public domain | W3C validator |