Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  wetrep Structured version   Visualization version   GIF version

Theorem wetrep 5243
 Description: An epsilon well-ordering is a transitive relation. (Contributed by NM, 22-Apr-1994.)
Assertion
Ref Expression
wetrep (( E We 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))

Proof of Theorem wetrep
StepHypRef Expression
1 weso 5241 . . 3 ( E We 𝐴 → E Or 𝐴)
2 sotr 5193 . . 3 (( E Or 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
31, 2sylan 569 . 2 (( E We 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
4 epel 5166 . . 3 (𝑥 E 𝑦𝑥𝑦)
5 epel 5166 . . 3 (𝑦 E 𝑧𝑦𝑧)
64, 5anbi12i 612 . 2 ((𝑥 E 𝑦𝑦 E 𝑧) ↔ (𝑥𝑦𝑦𝑧))
7 epel 5166 . 2 (𝑥 E 𝑧𝑥𝑧)
83, 6, 73imtr3g 284 1 (( E We 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   ∧ w3a 1071   ∈ wcel 2145   class class class wbr 4787   E cep 5162   Or wor 5170   We wwe 5208 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pr 5035 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-br 4788  df-opab 4848  df-eprel 5163  df-po 5171  df-so 5172  df-we 5211 This theorem is referenced by:  wefrc  5244  ordelord  5887
 Copyright terms: Public domain W3C validator