![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wess | Structured version Visualization version GIF version |
Description: Subset theorem for the well-ordering predicate. Exercise 4 of [TakeutiZaring] p. 31. (Contributed by NM, 19-Apr-1994.) |
Ref | Expression |
---|---|
wess | ⊢ (𝐴 ⊆ 𝐵 → (𝑅 We 𝐵 → 𝑅 We 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frss 5110 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Fr 𝐵 → 𝑅 Fr 𝐴)) | |
2 | soss 5082 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Or 𝐵 → 𝑅 Or 𝐴)) | |
3 | 1, 2 | anim12d 585 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑅 Fr 𝐵 ∧ 𝑅 Or 𝐵) → (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴))) |
4 | df-we 5104 | . 2 ⊢ (𝑅 We 𝐵 ↔ (𝑅 Fr 𝐵 ∧ 𝑅 Or 𝐵)) | |
5 | df-we 5104 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
6 | 3, 4, 5 | 3imtr4g 285 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 We 𝐵 → 𝑅 We 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ⊆ wss 3607 Or wor 5063 Fr wfr 5099 We wwe 5101 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-ral 2946 df-in 3614 df-ss 3621 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 |
This theorem is referenced by: wefrc 5137 trssord 5778 ordelord 5783 omsinds 7126 fnwelem 7337 wfrlem5 7464 dfrecs3 7514 ordtypelem8 8471 oismo 8486 cantnfcl 8602 infxpenlem 8874 ac10ct 8895 dfac12lem2 9004 cflim2 9123 cofsmo 9129 hsmexlem1 9286 smobeth 9446 canthwelem 9510 gruina 9678 ltwefz 12802 dford5 31734 welb 33661 dnwech 37935 aomclem4 37944 dfac11 37949 onfrALTlem3 39076 onfrALTlem3VD 39437 |
Copyright terms: Public domain | W3C validator |