![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > weso | Structured version Visualization version GIF version |
Description: A well-ordering is a strict ordering. (Contributed by NM, 16-Mar-1997.) |
Ref | Expression |
---|---|
weso | ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-we 5104 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
2 | 1 | simprbi 479 | 1 ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Or wor 5063 Fr wfr 5099 We wwe 5101 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-we 5104 |
This theorem is referenced by: wecmpep 5135 wetrep 5136 wereu 5139 wereu2 5140 weniso 6644 wexp 7336 wfrlem10 7469 ordunifi 8251 ordtypelem7 8470 ordtypelem8 8471 hartogslem1 8488 wofib 8491 wemapso 8497 oemapso 8617 cantnf 8628 ween 8896 cflim2 9123 fin23lem27 9188 zorn2lem1 9356 zorn2lem4 9359 fpwwe2lem12 9501 fpwwe2lem13 9502 fpwwe2 9503 canth4 9507 canthwelem 9510 pwfseqlem4 9522 ltsopi 9748 wzel 31894 wsuccl 31897 wsuclb 31898 welb 33661 wepwso 37930 fnwe2lem3 37939 wessf1ornlem 39685 |
Copyright terms: Public domain | W3C validator |