Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  wemapso2 Structured version   Visualization version   GIF version

Theorem wemapso2 8623
 Description: An alternative to having a well-order on 𝑅 in wemapso 8621 is to restrict the function set to finitely-supported functions. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 1-Jul-2019.)
Hypotheses
Ref Expression
wemapso.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
wemapso2.u 𝑈 = {𝑥 ∈ (𝐵𝑚 𝐴) ∣ 𝑥 finSupp 𝑍}
Assertion
Ref Expression
wemapso2 ((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) → 𝑇 Or 𝑈)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝑅,𝑥,𝑦,𝑧   𝑤,𝑆,𝑥,𝑦,𝑧   𝑥,𝑍
Allowed substitution hints:   𝐵(𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)   𝑈(𝑥,𝑦,𝑧,𝑤)   𝑉(𝑥,𝑦,𝑧,𝑤)   𝑍(𝑦,𝑧,𝑤)

Proof of Theorem wemapso2
StepHypRef Expression
1 wemapso.t . . . 4 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
2 wemapso2.u . . . 4 𝑈 = {𝑥 ∈ (𝐵𝑚 𝐴) ∣ 𝑥 finSupp 𝑍}
31, 2wemapso2lem 8622 . . 3 (((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍 ∈ V) → 𝑇 Or 𝑈)
43expcom 450 . 2 (𝑍 ∈ V → ((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) → 𝑇 Or 𝑈))
5 so0 5220 . . . 4 𝑇 Or ∅
6 relfsupp 8442 . . . . . . . . . 10 Rel finSupp
76brrelex2i 5316 . . . . . . . . 9 (𝑥 finSupp 𝑍𝑍 ∈ V)
87con3i 150 . . . . . . . 8 𝑍 ∈ V → ¬ 𝑥 finSupp 𝑍)
98ralrimivw 3105 . . . . . . 7 𝑍 ∈ V → ∀𝑥 ∈ (𝐵𝑚 𝐴) ¬ 𝑥 finSupp 𝑍)
10 rabeq0 4100 . . . . . . 7 ({𝑥 ∈ (𝐵𝑚 𝐴) ∣ 𝑥 finSupp 𝑍} = ∅ ↔ ∀𝑥 ∈ (𝐵𝑚 𝐴) ¬ 𝑥 finSupp 𝑍)
119, 10sylibr 224 . . . . . 6 𝑍 ∈ V → {𝑥 ∈ (𝐵𝑚 𝐴) ∣ 𝑥 finSupp 𝑍} = ∅)
122, 11syl5eq 2806 . . . . 5 𝑍 ∈ V → 𝑈 = ∅)
13 soeq2 5207 . . . . 5 (𝑈 = ∅ → (𝑇 Or 𝑈𝑇 Or ∅))
1412, 13syl 17 . . . 4 𝑍 ∈ V → (𝑇 Or 𝑈𝑇 Or ∅))
155, 14mpbiri 248 . . 3 𝑍 ∈ V → 𝑇 Or 𝑈)
1615a1d 25 . 2 𝑍 ∈ V → ((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) → 𝑇 Or 𝑈))
174, 16pm2.61i 176 1 ((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) → 𝑇 Or 𝑈)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139  ∀wral 3050  ∃wrex 3051  {crab 3054  Vcvv 3340  ∅c0 4058   class class class wbr 4804  {copab 4864   Or wor 5186  ‘cfv 6049  (class class class)co 6813   ↑𝑚 cmap 8023   finSupp cfsupp 8440 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-en 8122  df-fin 8125  df-fsupp 8441 This theorem is referenced by:  oemapso  8752
 Copyright terms: Public domain W3C validator