![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > weisoeq2 | Structured version Visualization version GIF version |
Description: Thus, there is at most one isomorphism between any two set-like well-ordered classes. Class version of wemoiso2 7319. (Contributed by Mario Carneiro, 25-Jun-2015.) |
Ref | Expression |
---|---|
weisoeq2 | ⊢ (((𝑆 We 𝐵 ∧ 𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 = 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isocnv 6743 | . . . 4 ⊢ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ◡𝐹 Isom 𝑆, 𝑅 (𝐵, 𝐴)) | |
2 | isocnv 6743 | . . . 4 ⊢ (𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ◡𝐺 Isom 𝑆, 𝑅 (𝐵, 𝐴)) | |
3 | 1, 2 | anim12i 591 | . . 3 ⊢ ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵)) → (◡𝐹 Isom 𝑆, 𝑅 (𝐵, 𝐴) ∧ ◡𝐺 Isom 𝑆, 𝑅 (𝐵, 𝐴))) |
4 | weisoeq 6768 | . . 3 ⊢ (((𝑆 We 𝐵 ∧ 𝑆 Se 𝐵) ∧ (◡𝐹 Isom 𝑆, 𝑅 (𝐵, 𝐴) ∧ ◡𝐺 Isom 𝑆, 𝑅 (𝐵, 𝐴))) → ◡𝐹 = ◡𝐺) | |
5 | 3, 4 | sylan2 492 | . 2 ⊢ (((𝑆 We 𝐵 ∧ 𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → ◡𝐹 = ◡𝐺) |
6 | simprl 811 | . . . 4 ⊢ (((𝑆 We 𝐵 ∧ 𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | |
7 | isof1o 6736 | . . . 4 ⊢ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐹:𝐴–1-1-onto→𝐵) | |
8 | f1orel 6301 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Rel 𝐹) | |
9 | 6, 7, 8 | 3syl 18 | . . 3 ⊢ (((𝑆 We 𝐵 ∧ 𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → Rel 𝐹) |
10 | simprr 813 | . . . 4 ⊢ (((𝑆 We 𝐵 ∧ 𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | |
11 | isof1o 6736 | . . . 4 ⊢ (𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐺:𝐴–1-1-onto→𝐵) | |
12 | f1orel 6301 | . . . 4 ⊢ (𝐺:𝐴–1-1-onto→𝐵 → Rel 𝐺) | |
13 | 10, 11, 12 | 3syl 18 | . . 3 ⊢ (((𝑆 We 𝐵 ∧ 𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → Rel 𝐺) |
14 | cnveqb 5748 | . . 3 ⊢ ((Rel 𝐹 ∧ Rel 𝐺) → (𝐹 = 𝐺 ↔ ◡𝐹 = ◡𝐺)) | |
15 | 9, 13, 14 | syl2anc 696 | . 2 ⊢ (((𝑆 We 𝐵 ∧ 𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → (𝐹 = 𝐺 ↔ ◡𝐹 = ◡𝐺)) |
16 | 5, 15 | mpbird 247 | 1 ⊢ (((𝑆 We 𝐵 ∧ 𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 = 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 Se wse 5223 We wwe 5224 ◡ccnv 5265 Rel wrel 5271 –1-1-onto→wf1o 6048 Isom wiso 6050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 |
This theorem is referenced by: wemoiso2 7319 |
Copyright terms: Public domain | W3C validator |