![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wefr | Structured version Visualization version GIF version |
Description: A well-ordering is well-founded. (Contributed by NM, 22-Apr-1994.) |
Ref | Expression |
---|---|
wefr | ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-we 5210 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
2 | 1 | simplbi 485 | 1 ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Or wor 5169 Fr wfr 5205 We wwe 5207 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 383 df-we 5210 |
This theorem is referenced by: wefrc 5243 wereu 5245 wereu2 5246 ordfr 5881 wexp 7442 wfrlem14 7581 wofib 8606 wemapso 8612 wemapso2lem 8613 cflim2 9287 fpwwe2lem12 9665 fpwwe2lem13 9666 fpwwe2 9667 welb 33863 fnwe2lem2 38147 onfrALTlem3 39284 onfrALTlem3VD 39645 |
Copyright terms: Public domain | W3C validator |