![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ween | Structured version Visualization version GIF version |
Description: A set is numerable iff it can be well-ordered. (Contributed by Mario Carneiro, 5-Jan-2013.) |
Ref | Expression |
---|---|
ween | ⊢ (𝐴 ∈ dom card ↔ ∃𝑟 𝑟 We 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfac8b 8967 | . 2 ⊢ (𝐴 ∈ dom card → ∃𝑟 𝑟 We 𝐴) | |
2 | weso 5209 | . . . . 5 ⊢ (𝑟 We 𝐴 → 𝑟 Or 𝐴) | |
3 | vex 3307 | . . . . 5 ⊢ 𝑟 ∈ V | |
4 | soex 7226 | . . . . 5 ⊢ ((𝑟 Or 𝐴 ∧ 𝑟 ∈ V) → 𝐴 ∈ V) | |
5 | 2, 3, 4 | sylancl 697 | . . . 4 ⊢ (𝑟 We 𝐴 → 𝐴 ∈ V) |
6 | 5 | exlimiv 1971 | . . 3 ⊢ (∃𝑟 𝑟 We 𝐴 → 𝐴 ∈ V) |
7 | unipw 5023 | . . . . . 6 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
8 | weeq2 5207 | . . . . . 6 ⊢ (∪ 𝒫 𝐴 = 𝐴 → (𝑟 We ∪ 𝒫 𝐴 ↔ 𝑟 We 𝐴)) | |
9 | 7, 8 | ax-mp 5 | . . . . 5 ⊢ (𝑟 We ∪ 𝒫 𝐴 ↔ 𝑟 We 𝐴) |
10 | 9 | exbii 1887 | . . . 4 ⊢ (∃𝑟 𝑟 We ∪ 𝒫 𝐴 ↔ ∃𝑟 𝑟 We 𝐴) |
11 | 10 | biimpri 218 | . . 3 ⊢ (∃𝑟 𝑟 We 𝐴 → ∃𝑟 𝑟 We ∪ 𝒫 𝐴) |
12 | pwexg 4955 | . . . . 5 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | |
13 | dfac8c 8969 | . . . . 5 ⊢ (𝒫 𝐴 ∈ V → (∃𝑟 𝑟 We ∪ 𝒫 𝐴 → ∃𝑓∀𝑥 ∈ 𝒫 𝐴(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝐴 ∈ V → (∃𝑟 𝑟 We ∪ 𝒫 𝐴 → ∃𝑓∀𝑥 ∈ 𝒫 𝐴(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
15 | dfac8a 8966 | . . . 4 ⊢ (𝐴 ∈ V → (∃𝑓∀𝑥 ∈ 𝒫 𝐴(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) → 𝐴 ∈ dom card)) | |
16 | 14, 15 | syld 47 | . . 3 ⊢ (𝐴 ∈ V → (∃𝑟 𝑟 We ∪ 𝒫 𝐴 → 𝐴 ∈ dom card)) |
17 | 6, 11, 16 | sylc 65 | . 2 ⊢ (∃𝑟 𝑟 We 𝐴 → 𝐴 ∈ dom card) |
18 | 1, 17 | impbii 199 | 1 ⊢ (𝐴 ∈ dom card ↔ ∃𝑟 𝑟 We 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1596 ∃wex 1817 ∈ wcel 2103 ≠ wne 2896 ∀wral 3014 Vcvv 3304 ∅c0 4023 𝒫 cpw 4266 ∪ cuni 4544 Or wor 5138 We wwe 5176 dom cdm 5218 ‘cfv 6001 cardccrd 8874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-ral 3019 df-rex 3020 df-reu 3021 df-rmo 3022 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-int 4584 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-se 5178 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-isom 6010 df-riota 6726 df-wrecs 7527 df-recs 7588 df-en 8073 df-card 8878 |
This theorem is referenced by: ondomen 8973 dfac10 9072 zorn2lem7 9437 fpwwe 9581 canthnumlem 9583 canthp1lem2 9588 pwfseqlem4a 9596 pwfseqlem4 9597 fin2so 33628 |
Copyright terms: Public domain | W3C validator |