![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wdomnumr | Structured version Visualization version GIF version |
Description: Weak dominance agrees with normal for numerable right sets. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
Ref | Expression |
---|---|
wdomnumr | ⊢ (𝐵 ∈ dom card → (𝐴 ≼* 𝐵 ↔ 𝐴 ≼ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brwdom 8513 | . . 3 ⊢ (𝐵 ∈ dom card → (𝐴 ≼* 𝐵 ↔ (𝐴 = ∅ ∨ ∃𝑥 𝑥:𝐵–onto→𝐴))) | |
2 | 0domg 8128 | . . . . 5 ⊢ (𝐵 ∈ dom card → ∅ ≼ 𝐵) | |
3 | breq1 4688 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐴 ≼ 𝐵 ↔ ∅ ≼ 𝐵)) | |
4 | 2, 3 | syl5ibrcom 237 | . . . 4 ⊢ (𝐵 ∈ dom card → (𝐴 = ∅ → 𝐴 ≼ 𝐵)) |
5 | fodomnum 8918 | . . . . 5 ⊢ (𝐵 ∈ dom card → (𝑥:𝐵–onto→𝐴 → 𝐴 ≼ 𝐵)) | |
6 | 5 | exlimdv 1901 | . . . 4 ⊢ (𝐵 ∈ dom card → (∃𝑥 𝑥:𝐵–onto→𝐴 → 𝐴 ≼ 𝐵)) |
7 | 4, 6 | jaod 394 | . . 3 ⊢ (𝐵 ∈ dom card → ((𝐴 = ∅ ∨ ∃𝑥 𝑥:𝐵–onto→𝐴) → 𝐴 ≼ 𝐵)) |
8 | 1, 7 | sylbid 230 | . 2 ⊢ (𝐵 ∈ dom card → (𝐴 ≼* 𝐵 → 𝐴 ≼ 𝐵)) |
9 | domwdom 8520 | . 2 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ≼* 𝐵) | |
10 | 8, 9 | impbid1 215 | 1 ⊢ (𝐵 ∈ dom card → (𝐴 ≼* 𝐵 ↔ 𝐴 ≼ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∨ wo 382 = wceq 1523 ∃wex 1744 ∈ wcel 2030 ∅c0 3948 class class class wbr 4685 dom cdm 5143 –onto→wfo 5924 ≼ cdom 7995 ≼* cwdom 8503 cardccrd 8799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-wdom 8505 df-card 8803 df-acn 8806 |
This theorem is referenced by: wdomac 9387 ttac 37920 isnumbasgrplem2 37991 |
Copyright terms: Public domain | W3C validator |