MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wdomimag Structured version   Visualization version   GIF version

Theorem wdomimag 8477
Description: A set is weakly dominant over its image under any function. (Contributed by Stefan O'Rear, 14-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
wdomimag ((Fun 𝐹𝐴𝑉) → (𝐹𝐴) ≼* 𝐴)

Proof of Theorem wdomimag
StepHypRef Expression
1 funimaexg 5963 . 2 ((Fun 𝐹𝐴𝑉) → (𝐹𝐴) ∈ V)
2 wdomima2g 8476 . 2 ((Fun 𝐹𝐴𝑉 ∧ (𝐹𝐴) ∈ V) → (𝐹𝐴) ≼* 𝐴)
31, 2mpd3an3 1423 1 ((Fun 𝐹𝐴𝑉) → (𝐹𝐴) ≼* 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1988  Vcvv 3195   class class class wbr 4644  cima 5107  Fun wfun 5870  * cwdom 8447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-wdom 8449
This theorem is referenced by:  hsmexlem4  9236
  Copyright terms: Public domain W3C validator