![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wdomfil | Structured version Visualization version GIF version |
Description: Weak dominance agrees with normal for finite left sets. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
Ref | Expression |
---|---|
wdomfil | ⊢ (𝑋 ∈ Fin → (𝑋 ≼* 𝑌 ↔ 𝑋 ≼ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relwdom 8512 | . . . . . . 7 ⊢ Rel ≼* | |
2 | 1 | brrelex2i 5193 | . . . . . 6 ⊢ (𝑋 ≼* 𝑌 → 𝑌 ∈ V) |
3 | 0domg 8128 | . . . . . 6 ⊢ (𝑌 ∈ V → ∅ ≼ 𝑌) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝑋 ≼* 𝑌 → ∅ ≼ 𝑌) |
5 | breq1 4688 | . . . . 5 ⊢ (𝑋 = ∅ → (𝑋 ≼ 𝑌 ↔ ∅ ≼ 𝑌)) | |
6 | 4, 5 | syl5ibr 236 | . . . 4 ⊢ (𝑋 = ∅ → (𝑋 ≼* 𝑌 → 𝑋 ≼ 𝑌)) |
7 | 6 | adantl 481 | . . 3 ⊢ ((𝑋 ∈ Fin ∧ 𝑋 = ∅) → (𝑋 ≼* 𝑌 → 𝑋 ≼ 𝑌)) |
8 | brwdomn0 8515 | . . . . 5 ⊢ (𝑋 ≠ ∅ → (𝑋 ≼* 𝑌 ↔ ∃𝑥 𝑥:𝑌–onto→𝑋)) | |
9 | 8 | adantl 481 | . . . 4 ⊢ ((𝑋 ∈ Fin ∧ 𝑋 ≠ ∅) → (𝑋 ≼* 𝑌 ↔ ∃𝑥 𝑥:𝑌–onto→𝑋)) |
10 | vex 3234 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
11 | fof 6153 | . . . . . . . . . 10 ⊢ (𝑥:𝑌–onto→𝑋 → 𝑥:𝑌⟶𝑋) | |
12 | dmfex 7166 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ V ∧ 𝑥:𝑌⟶𝑋) → 𝑌 ∈ V) | |
13 | 10, 11, 12 | sylancr 696 | . . . . . . . . 9 ⊢ (𝑥:𝑌–onto→𝑋 → 𝑌 ∈ V) |
14 | 13 | adantl 481 | . . . . . . . 8 ⊢ ((𝑋 ∈ Fin ∧ 𝑥:𝑌–onto→𝑋) → 𝑌 ∈ V) |
15 | simpl 472 | . . . . . . . 8 ⊢ ((𝑋 ∈ Fin ∧ 𝑥:𝑌–onto→𝑋) → 𝑋 ∈ Fin) | |
16 | simpr 476 | . . . . . . . 8 ⊢ ((𝑋 ∈ Fin ∧ 𝑥:𝑌–onto→𝑋) → 𝑥:𝑌–onto→𝑋) | |
17 | fodomfi2 8921 | . . . . . . . 8 ⊢ ((𝑌 ∈ V ∧ 𝑋 ∈ Fin ∧ 𝑥:𝑌–onto→𝑋) → 𝑋 ≼ 𝑌) | |
18 | 14, 15, 16, 17 | syl3anc 1366 | . . . . . . 7 ⊢ ((𝑋 ∈ Fin ∧ 𝑥:𝑌–onto→𝑋) → 𝑋 ≼ 𝑌) |
19 | 18 | ex 449 | . . . . . 6 ⊢ (𝑋 ∈ Fin → (𝑥:𝑌–onto→𝑋 → 𝑋 ≼ 𝑌)) |
20 | 19 | adantr 480 | . . . . 5 ⊢ ((𝑋 ∈ Fin ∧ 𝑋 ≠ ∅) → (𝑥:𝑌–onto→𝑋 → 𝑋 ≼ 𝑌)) |
21 | 20 | exlimdv 1901 | . . . 4 ⊢ ((𝑋 ∈ Fin ∧ 𝑋 ≠ ∅) → (∃𝑥 𝑥:𝑌–onto→𝑋 → 𝑋 ≼ 𝑌)) |
22 | 9, 21 | sylbid 230 | . . 3 ⊢ ((𝑋 ∈ Fin ∧ 𝑋 ≠ ∅) → (𝑋 ≼* 𝑌 → 𝑋 ≼ 𝑌)) |
23 | 7, 22 | pm2.61dane 2910 | . 2 ⊢ (𝑋 ∈ Fin → (𝑋 ≼* 𝑌 → 𝑋 ≼ 𝑌)) |
24 | domwdom 8520 | . 2 ⊢ (𝑋 ≼ 𝑌 → 𝑋 ≼* 𝑌) | |
25 | 23, 24 | impbid1 215 | 1 ⊢ (𝑋 ∈ Fin → (𝑋 ≼* 𝑌 ↔ 𝑋 ≼ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∃wex 1744 ∈ wcel 2030 ≠ wne 2823 Vcvv 3231 ∅c0 3948 class class class wbr 4685 ⟶wf 5922 –onto→wfo 5924 ≼ cdom 7995 Fincfn 7997 ≼* cwdom 8503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-1o 7605 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-wdom 8505 df-card 8803 df-acn 8806 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |