![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wdomen1 | Structured version Visualization version GIF version |
Description: Equality-like theorem for equinumerosity and weak dominance. (Contributed by Mario Carneiro, 18-May-2015.) |
Ref | Expression |
---|---|
wdomen1 | ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≼* 𝐶 ↔ 𝐵 ≼* 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensym 8166 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
2 | endom 8144 | . . . 4 ⊢ (𝐵 ≈ 𝐴 → 𝐵 ≼ 𝐴) | |
3 | domwdom 8640 | . . . 4 ⊢ (𝐵 ≼ 𝐴 → 𝐵 ≼* 𝐴) | |
4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≼* 𝐴) |
5 | wdomtr 8641 | . . 3 ⊢ ((𝐵 ≼* 𝐴 ∧ 𝐴 ≼* 𝐶) → 𝐵 ≼* 𝐶) | |
6 | 4, 5 | sylan 489 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ≼* 𝐶) → 𝐵 ≼* 𝐶) |
7 | endom 8144 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) | |
8 | domwdom 8640 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ≼* 𝐵) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼* 𝐵) |
10 | wdomtr 8641 | . . 3 ⊢ ((𝐴 ≼* 𝐵 ∧ 𝐵 ≼* 𝐶) → 𝐴 ≼* 𝐶) | |
11 | 9, 10 | sylan 489 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≼* 𝐶) → 𝐴 ≼* 𝐶) |
12 | 6, 11 | impbida 913 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≼* 𝐶 ↔ 𝐵 ≼* 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 class class class wbr 4800 ≈ cen 8114 ≼ cdom 8115 ≼* cwdom 8623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-8 2137 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-sep 4929 ax-nul 4937 ax-pow 4988 ax-pr 5051 ax-un 7110 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-ral 3051 df-rex 3052 df-rab 3055 df-v 3338 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-nul 4055 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4585 df-br 4801 df-opab 4861 df-mpt 4878 df-id 5170 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-rn 5273 df-res 5274 df-ima 5275 df-fun 6047 df-fn 6048 df-f 6049 df-f1 6050 df-fo 6051 df-f1o 6052 df-er 7907 df-en 8118 df-dom 8119 df-sdom 8120 df-wdom 8625 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |