![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vuniex | Structured version Visualization version GIF version |
Description: The union of a setvar is a set. (Contributed by BJ, 3-May-2021.) |
Ref | Expression |
---|---|
vuniex | ⊢ ∪ 𝑥 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3234 | . 2 ⊢ 𝑥 ∈ V | |
2 | 1 | uniex 6995 | 1 ⊢ ∪ 𝑥 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2030 Vcvv 3231 ∪ cuni 4468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rex 2947 df-v 3233 df-uni 4469 |
This theorem is referenced by: uniexg 6997 uniuni 7013 rankuni 8764 r0weon 8873 dfac3 8982 dfac5lem4 8987 dfac8 8995 dfacacn 9001 kmlem2 9011 cfslb2n 9128 ttukeylem5 9373 ttukeylem6 9374 brdom7disj 9391 brdom6disj 9392 intwun 9595 wunex2 9598 fnmrc 16314 mrcfval 16315 mrisval 16337 sylow2a 18080 toprntopon 20777 distop 20847 fctop 20856 cctop 20858 ppttop 20859 epttop 20861 fncld 20874 mretopd 20944 toponmre 20945 iscnp2 21091 2ndcsep 21310 kgenf 21392 alexsubALTlem2 21899 pwsiga 30321 sigainb 30327 dmsigagen 30335 pwldsys 30348 ldsysgenld 30351 ldgenpisyslem1 30354 ddemeas 30427 brapply 32170 dfrdg4 32183 fnessref 32477 neibastop1 32479 finxpreclem2 33357 mbfresfi 33586 pwinfi 38186 pwsal 40853 intsal 40866 salexct 40870 0ome 41064 |
Copyright terms: Public domain | W3C validator |