Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdginducedm1lem4 Structured version   Visualization version   GIF version

Theorem vtxdginducedm1lem4 26648
 Description: Lemma 4 for vtxdginducedm1 26649. (Contributed by AV, 17-Dec-2021.)
Hypotheses
Ref Expression
vtxdginducedm1.v 𝑉 = (Vtx‘𝐺)
vtxdginducedm1.e 𝐸 = (iEdg‘𝐺)
vtxdginducedm1.k 𝐾 = (𝑉 ∖ {𝑁})
vtxdginducedm1.i 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
vtxdginducedm1.p 𝑃 = (𝐸𝐼)
vtxdginducedm1.s 𝑆 = ⟨𝐾, 𝑃
vtxdginducedm1.j 𝐽 = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}
Assertion
Ref Expression
vtxdginducedm1lem4 (𝑊 ∈ (𝑉 ∖ {𝑁}) → (♯‘{𝑘𝐽 ∣ (𝐸𝑘) = {𝑊}}) = 0)
Distinct variable groups:   𝑖,𝐸   𝑘,𝐽   𝑖,𝑁,𝑘   𝑘,𝑉   𝑘,𝑊
Allowed substitution hints:   𝑃(𝑖,𝑘)   𝑆(𝑖,𝑘)   𝐸(𝑘)   𝐺(𝑖,𝑘)   𝐼(𝑖,𝑘)   𝐽(𝑖)   𝐾(𝑖,𝑘)   𝑉(𝑖)   𝑊(𝑖)

Proof of Theorem vtxdginducedm1lem4
StepHypRef Expression
1 fveq2 6352 . . . . . . . 8 (𝑖 = 𝑘 → (𝐸𝑖) = (𝐸𝑘))
21eleq2d 2825 . . . . . . 7 (𝑖 = 𝑘 → (𝑁 ∈ (𝐸𝑖) ↔ 𝑁 ∈ (𝐸𝑘)))
3 vtxdginducedm1.j . . . . . . 7 𝐽 = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}
42, 3elrab2 3507 . . . . . 6 (𝑘𝐽 ↔ (𝑘 ∈ dom 𝐸𝑁 ∈ (𝐸𝑘)))
5 eldifsn 4462 . . . . . . . 8 (𝑊 ∈ (𝑉 ∖ {𝑁}) ↔ (𝑊𝑉𝑊𝑁))
6 df-ne 2933 . . . . . . . . 9 (𝑊𝑁 ↔ ¬ 𝑊 = 𝑁)
7 eleq2 2828 . . . . . . . . . . . 12 ((𝐸𝑘) = {𝑊} → (𝑁 ∈ (𝐸𝑘) ↔ 𝑁 ∈ {𝑊}))
8 elsni 4338 . . . . . . . . . . . . 13 (𝑁 ∈ {𝑊} → 𝑁 = 𝑊)
98eqcomd 2766 . . . . . . . . . . . 12 (𝑁 ∈ {𝑊} → 𝑊 = 𝑁)
107, 9syl6bi 243 . . . . . . . . . . 11 ((𝐸𝑘) = {𝑊} → (𝑁 ∈ (𝐸𝑘) → 𝑊 = 𝑁))
1110com12 32 . . . . . . . . . 10 (𝑁 ∈ (𝐸𝑘) → ((𝐸𝑘) = {𝑊} → 𝑊 = 𝑁))
1211con3rr3 151 . . . . . . . . 9 𝑊 = 𝑁 → (𝑁 ∈ (𝐸𝑘) → ¬ (𝐸𝑘) = {𝑊}))
136, 12sylbi 207 . . . . . . . 8 (𝑊𝑁 → (𝑁 ∈ (𝐸𝑘) → ¬ (𝐸𝑘) = {𝑊}))
145, 13simplbiim 661 . . . . . . 7 (𝑊 ∈ (𝑉 ∖ {𝑁}) → (𝑁 ∈ (𝐸𝑘) → ¬ (𝐸𝑘) = {𝑊}))
1514com12 32 . . . . . 6 (𝑁 ∈ (𝐸𝑘) → (𝑊 ∈ (𝑉 ∖ {𝑁}) → ¬ (𝐸𝑘) = {𝑊}))
164, 15simplbiim 661 . . . . 5 (𝑘𝐽 → (𝑊 ∈ (𝑉 ∖ {𝑁}) → ¬ (𝐸𝑘) = {𝑊}))
1716impcom 445 . . . 4 ((𝑊 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑘𝐽) → ¬ (𝐸𝑘) = {𝑊})
1817ralrimiva 3104 . . 3 (𝑊 ∈ (𝑉 ∖ {𝑁}) → ∀𝑘𝐽 ¬ (𝐸𝑘) = {𝑊})
19 rabeq0 4100 . . 3 ({𝑘𝐽 ∣ (𝐸𝑘) = {𝑊}} = ∅ ↔ ∀𝑘𝐽 ¬ (𝐸𝑘) = {𝑊})
2018, 19sylibr 224 . 2 (𝑊 ∈ (𝑉 ∖ {𝑁}) → {𝑘𝐽 ∣ (𝐸𝑘) = {𝑊}} = ∅)
21 vtxdginducedm1.e . . . . . . . 8 𝐸 = (iEdg‘𝐺)
2221fvexi 6363 . . . . . . 7 𝐸 ∈ V
2322dmex 7264 . . . . . 6 dom 𝐸 ∈ V
2423rabex 4964 . . . . 5 {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)} ∈ V
253, 24eqeltri 2835 . . . 4 𝐽 ∈ V
2625rabex 4964 . . 3 {𝑘𝐽 ∣ (𝐸𝑘) = {𝑊}} ∈ V
27 hasheq0 13346 . . 3 ({𝑘𝐽 ∣ (𝐸𝑘) = {𝑊}} ∈ V → ((♯‘{𝑘𝐽 ∣ (𝐸𝑘) = {𝑊}}) = 0 ↔ {𝑘𝐽 ∣ (𝐸𝑘) = {𝑊}} = ∅))
2826, 27ax-mp 5 . 2 ((♯‘{𝑘𝐽 ∣ (𝐸𝑘) = {𝑊}}) = 0 ↔ {𝑘𝐽 ∣ (𝐸𝑘) = {𝑊}} = ∅)
2920, 28sylibr 224 1 (𝑊 ∈ (𝑉 ∖ {𝑁}) → (♯‘{𝑘𝐽 ∣ (𝐸𝑘) = {𝑊}}) = 0)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   = wceq 1632   ∈ wcel 2139   ≠ wne 2932   ∉ wnel 3035  ∀wral 3050  {crab 3054  Vcvv 3340   ∖ cdif 3712  ∅c0 4058  {csn 4321  ⟨cop 4327  dom cdm 5266   ↾ cres 5268  ‘cfv 6049  0cc0 10128  ♯chash 13311  Vtxcvtx 26073  iEdgciedg 26074 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-hash 13312 This theorem is referenced by:  vtxdginducedm1  26649
 Copyright terms: Public domain W3C validator