![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtxdginducedm1lem4 | Structured version Visualization version GIF version |
Description: Lemma 4 for vtxdginducedm1 26649. (Contributed by AV, 17-Dec-2021.) |
Ref | Expression |
---|---|
vtxdginducedm1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
vtxdginducedm1.e | ⊢ 𝐸 = (iEdg‘𝐺) |
vtxdginducedm1.k | ⊢ 𝐾 = (𝑉 ∖ {𝑁}) |
vtxdginducedm1.i | ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
vtxdginducedm1.p | ⊢ 𝑃 = (𝐸 ↾ 𝐼) |
vtxdginducedm1.s | ⊢ 𝑆 = 〈𝐾, 𝑃〉 |
vtxdginducedm1.j | ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} |
Ref | Expression |
---|---|
vtxdginducedm1lem4 | ⊢ (𝑊 ∈ (𝑉 ∖ {𝑁}) → (♯‘{𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}}) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6352 | . . . . . . . 8 ⊢ (𝑖 = 𝑘 → (𝐸‘𝑖) = (𝐸‘𝑘)) | |
2 | 1 | eleq2d 2825 | . . . . . . 7 ⊢ (𝑖 = 𝑘 → (𝑁 ∈ (𝐸‘𝑖) ↔ 𝑁 ∈ (𝐸‘𝑘))) |
3 | vtxdginducedm1.j | . . . . . . 7 ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} | |
4 | 2, 3 | elrab2 3507 | . . . . . 6 ⊢ (𝑘 ∈ 𝐽 ↔ (𝑘 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑘))) |
5 | eldifsn 4462 | . . . . . . . 8 ⊢ (𝑊 ∈ (𝑉 ∖ {𝑁}) ↔ (𝑊 ∈ 𝑉 ∧ 𝑊 ≠ 𝑁)) | |
6 | df-ne 2933 | . . . . . . . . 9 ⊢ (𝑊 ≠ 𝑁 ↔ ¬ 𝑊 = 𝑁) | |
7 | eleq2 2828 | . . . . . . . . . . . 12 ⊢ ((𝐸‘𝑘) = {𝑊} → (𝑁 ∈ (𝐸‘𝑘) ↔ 𝑁 ∈ {𝑊})) | |
8 | elsni 4338 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ {𝑊} → 𝑁 = 𝑊) | |
9 | 8 | eqcomd 2766 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ {𝑊} → 𝑊 = 𝑁) |
10 | 7, 9 | syl6bi 243 | . . . . . . . . . . 11 ⊢ ((𝐸‘𝑘) = {𝑊} → (𝑁 ∈ (𝐸‘𝑘) → 𝑊 = 𝑁)) |
11 | 10 | com12 32 | . . . . . . . . . 10 ⊢ (𝑁 ∈ (𝐸‘𝑘) → ((𝐸‘𝑘) = {𝑊} → 𝑊 = 𝑁)) |
12 | 11 | con3rr3 151 | . . . . . . . . 9 ⊢ (¬ 𝑊 = 𝑁 → (𝑁 ∈ (𝐸‘𝑘) → ¬ (𝐸‘𝑘) = {𝑊})) |
13 | 6, 12 | sylbi 207 | . . . . . . . 8 ⊢ (𝑊 ≠ 𝑁 → (𝑁 ∈ (𝐸‘𝑘) → ¬ (𝐸‘𝑘) = {𝑊})) |
14 | 5, 13 | simplbiim 661 | . . . . . . 7 ⊢ (𝑊 ∈ (𝑉 ∖ {𝑁}) → (𝑁 ∈ (𝐸‘𝑘) → ¬ (𝐸‘𝑘) = {𝑊})) |
15 | 14 | com12 32 | . . . . . 6 ⊢ (𝑁 ∈ (𝐸‘𝑘) → (𝑊 ∈ (𝑉 ∖ {𝑁}) → ¬ (𝐸‘𝑘) = {𝑊})) |
16 | 4, 15 | simplbiim 661 | . . . . 5 ⊢ (𝑘 ∈ 𝐽 → (𝑊 ∈ (𝑉 ∖ {𝑁}) → ¬ (𝐸‘𝑘) = {𝑊})) |
17 | 16 | impcom 445 | . . . 4 ⊢ ((𝑊 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑘 ∈ 𝐽) → ¬ (𝐸‘𝑘) = {𝑊}) |
18 | 17 | ralrimiva 3104 | . . 3 ⊢ (𝑊 ∈ (𝑉 ∖ {𝑁}) → ∀𝑘 ∈ 𝐽 ¬ (𝐸‘𝑘) = {𝑊}) |
19 | rabeq0 4100 | . . 3 ⊢ ({𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}} = ∅ ↔ ∀𝑘 ∈ 𝐽 ¬ (𝐸‘𝑘) = {𝑊}) | |
20 | 18, 19 | sylibr 224 | . 2 ⊢ (𝑊 ∈ (𝑉 ∖ {𝑁}) → {𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}} = ∅) |
21 | vtxdginducedm1.e | . . . . . . . 8 ⊢ 𝐸 = (iEdg‘𝐺) | |
22 | 21 | fvexi 6363 | . . . . . . 7 ⊢ 𝐸 ∈ V |
23 | 22 | dmex 7264 | . . . . . 6 ⊢ dom 𝐸 ∈ V |
24 | 23 | rabex 4964 | . . . . 5 ⊢ {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} ∈ V |
25 | 3, 24 | eqeltri 2835 | . . . 4 ⊢ 𝐽 ∈ V |
26 | 25 | rabex 4964 | . . 3 ⊢ {𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}} ∈ V |
27 | hasheq0 13346 | . . 3 ⊢ ({𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}} ∈ V → ((♯‘{𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}}) = 0 ↔ {𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}} = ∅)) | |
28 | 26, 27 | ax-mp 5 | . 2 ⊢ ((♯‘{𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}}) = 0 ↔ {𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}} = ∅) |
29 | 20, 28 | sylibr 224 | 1 ⊢ (𝑊 ∈ (𝑉 ∖ {𝑁}) → (♯‘{𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑊}}) = 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ∉ wnel 3035 ∀wral 3050 {crab 3054 Vcvv 3340 ∖ cdif 3712 ∅c0 4058 {csn 4321 〈cop 4327 dom cdm 5266 ↾ cres 5268 ‘cfv 6049 0cc0 10128 ♯chash 13311 Vtxcvtx 26073 iEdgciedg 26074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-card 8955 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-n0 11485 df-z 11570 df-uz 11880 df-fz 12520 df-hash 13312 |
This theorem is referenced by: vtxdginducedm1 26649 |
Copyright terms: Public domain | W3C validator |