![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtxdginducedm1fi | Structured version Visualization version GIF version |
Description: The degree of a vertex 𝑣 in the induced subgraph 𝑆 of a pseudograph 𝐺 of finite size obtained by removing one vertex 𝑁 plus the number of edges joining the vertex 𝑣 and the vertex 𝑁 is the degree of the vertex 𝑣 in the pseudograph 𝐺. (Contributed by AV, 18-Dec-2021.) |
Ref | Expression |
---|---|
vtxdginducedm1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
vtxdginducedm1.e | ⊢ 𝐸 = (iEdg‘𝐺) |
vtxdginducedm1.k | ⊢ 𝐾 = (𝑉 ∖ {𝑁}) |
vtxdginducedm1.i | ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
vtxdginducedm1.p | ⊢ 𝑃 = (𝐸 ↾ 𝐼) |
vtxdginducedm1.s | ⊢ 𝑆 = 〈𝐾, 𝑃〉 |
vtxdginducedm1.j | ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} |
Ref | Expression |
---|---|
vtxdginducedm1fi | ⊢ (𝐸 ∈ Fin → ∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtxdginducedm1.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | vtxdginducedm1.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | vtxdginducedm1.k | . . 3 ⊢ 𝐾 = (𝑉 ∖ {𝑁}) | |
4 | vtxdginducedm1.i | . . 3 ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} | |
5 | vtxdginducedm1.p | . . 3 ⊢ 𝑃 = (𝐸 ↾ 𝐼) | |
6 | vtxdginducedm1.s | . . 3 ⊢ 𝑆 = 〈𝐾, 𝑃〉 | |
7 | vtxdginducedm1.j | . . 3 ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} | |
8 | 1, 2, 3, 4, 5, 6, 7 | vtxdginducedm1 26641 | . 2 ⊢ ∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) +𝑒 (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)})) |
9 | 5 | dmeqi 5472 | . . . . . . . . 9 ⊢ dom 𝑃 = dom (𝐸 ↾ 𝐼) |
10 | finresfin 8343 | . . . . . . . . . 10 ⊢ (𝐸 ∈ Fin → (𝐸 ↾ 𝐼) ∈ Fin) | |
11 | dmfi 8401 | . . . . . . . . . 10 ⊢ ((𝐸 ↾ 𝐼) ∈ Fin → dom (𝐸 ↾ 𝐼) ∈ Fin) | |
12 | 10, 11 | syl 17 | . . . . . . . . 9 ⊢ (𝐸 ∈ Fin → dom (𝐸 ↾ 𝐼) ∈ Fin) |
13 | 9, 12 | syl5eqel 2835 | . . . . . . . 8 ⊢ (𝐸 ∈ Fin → dom 𝑃 ∈ Fin) |
14 | 6 | fveq2i 6347 | . . . . . . . . . 10 ⊢ (Vtx‘𝑆) = (Vtx‘〈𝐾, 𝑃〉) |
15 | 1 | fvexi 6355 | . . . . . . . . . . . . 13 ⊢ 𝑉 ∈ V |
16 | 15 | difexi 4953 | . . . . . . . . . . . 12 ⊢ (𝑉 ∖ {𝑁}) ∈ V |
17 | 3, 16 | eqeltri 2827 | . . . . . . . . . . 11 ⊢ 𝐾 ∈ V |
18 | 2 | fvexi 6355 | . . . . . . . . . . . . 13 ⊢ 𝐸 ∈ V |
19 | 18 | resex 5593 | . . . . . . . . . . . 12 ⊢ (𝐸 ↾ 𝐼) ∈ V |
20 | 5, 19 | eqeltri 2827 | . . . . . . . . . . 11 ⊢ 𝑃 ∈ V |
21 | 17, 20 | opvtxfvi 26080 | . . . . . . . . . 10 ⊢ (Vtx‘〈𝐾, 𝑃〉) = 𝐾 |
22 | 14, 21, 3 | 3eqtrri 2779 | . . . . . . . . 9 ⊢ (𝑉 ∖ {𝑁}) = (Vtx‘𝑆) |
23 | 1, 2, 3, 4, 5, 6 | vtxdginducedm1lem1 26637 | . . . . . . . . . 10 ⊢ (iEdg‘𝑆) = 𝑃 |
24 | 23 | eqcomi 2761 | . . . . . . . . 9 ⊢ 𝑃 = (iEdg‘𝑆) |
25 | eqid 2752 | . . . . . . . . 9 ⊢ dom 𝑃 = dom 𝑃 | |
26 | 22, 24, 25 | vtxdgfisnn0 26573 | . . . . . . . 8 ⊢ ((dom 𝑃 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ((VtxDeg‘𝑆)‘𝑣) ∈ ℕ0) |
27 | 13, 26 | sylan 489 | . . . . . . 7 ⊢ ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ((VtxDeg‘𝑆)‘𝑣) ∈ ℕ0) |
28 | 27 | nn0red 11536 | . . . . . 6 ⊢ ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ((VtxDeg‘𝑆)‘𝑣) ∈ ℝ) |
29 | dmfi 8401 | . . . . . . . . . . 11 ⊢ (𝐸 ∈ Fin → dom 𝐸 ∈ Fin) | |
30 | rabfi 8342 | . . . . . . . . . . 11 ⊢ (dom 𝐸 ∈ Fin → {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} ∈ Fin) | |
31 | 29, 30 | syl 17 | . . . . . . . . . 10 ⊢ (𝐸 ∈ Fin → {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} ∈ Fin) |
32 | 7, 31 | syl5eqel 2835 | . . . . . . . . 9 ⊢ (𝐸 ∈ Fin → 𝐽 ∈ Fin) |
33 | rabfi 8342 | . . . . . . . . 9 ⊢ (𝐽 ∈ Fin → {𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)} ∈ Fin) | |
34 | hashcl 13331 | . . . . . . . . 9 ⊢ ({𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)} ∈ Fin → (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)}) ∈ ℕ0) | |
35 | 32, 33, 34 | 3syl 18 | . . . . . . . 8 ⊢ (𝐸 ∈ Fin → (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)}) ∈ ℕ0) |
36 | 35 | adantr 472 | . . . . . . 7 ⊢ ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)}) ∈ ℕ0) |
37 | 36 | nn0red 11536 | . . . . . 6 ⊢ ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)}) ∈ ℝ) |
38 | 28, 37 | rexaddd 12250 | . . . . 5 ⊢ ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (((VtxDeg‘𝑆)‘𝑣) +𝑒 (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)})) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)}))) |
39 | 38 | eqeq2d 2762 | . . . 4 ⊢ ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) +𝑒 (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)})) ↔ ((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)})))) |
40 | 39 | biimpd 219 | . . 3 ⊢ ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) +𝑒 (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)})) → ((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)})))) |
41 | 40 | ralimdva 3092 | . 2 ⊢ (𝐸 ∈ Fin → (∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) +𝑒 (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)})) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)})))) |
42 | 8, 41 | mpi 20 | 1 ⊢ (𝐸 ∈ Fin → ∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1624 ∈ wcel 2131 ∉ wnel 3027 ∀wral 3042 {crab 3046 Vcvv 3332 ∖ cdif 3704 {csn 4313 〈cop 4319 dom cdm 5258 ↾ cres 5260 ‘cfv 6041 (class class class)co 6805 Fincfn 8113 + caddc 10123 ℕ0cn0 11476 +𝑒 cxad 12129 ♯chash 13303 Vtxcvtx 26065 iEdgciedg 26066 VtxDegcvtxdg 26563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rmo 3050 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-int 4620 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-1st 7325 df-2nd 7326 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-1o 7721 df-oadd 7725 df-er 7903 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-card 8947 df-cda 9174 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-nn 11205 df-n0 11477 df-xnn0 11548 df-z 11562 df-uz 11872 df-xadd 12132 df-fz 12512 df-hash 13304 df-vtx 26067 df-iedg 26068 df-vtxdg 26564 |
This theorem is referenced by: finsumvtxdg2ssteplem4 26646 |
Copyright terms: Public domain | W3C validator |