![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtoclg1f | Structured version Visualization version GIF version |
Description: Version of vtoclgf 3295 with one non-freeness hypothesis replaced with a dv condition, thus avoiding dependency on ax-11 2074 and ax-13 2282. (Contributed by BJ, 1-May-2019.) |
Ref | Expression |
---|---|
vtoclg1f.nf | ⊢ Ⅎ𝑥𝜓 |
vtoclg1f.maj | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtoclg1f.min | ⊢ 𝜑 |
Ref | Expression |
---|---|
vtoclg1f | ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3243 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | isset 3238 | . . 3 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
3 | vtoclg1f.nf | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
4 | vtoclg1f.min | . . . . 5 ⊢ 𝜑 | |
5 | vtoclg1f.maj | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
6 | 4, 5 | mpbii 223 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝜓) |
7 | 3, 6 | exlimi 2124 | . . 3 ⊢ (∃𝑥 𝑥 = 𝐴 → 𝜓) |
8 | 2, 7 | sylbi 207 | . 2 ⊢ (𝐴 ∈ V → 𝜓) |
9 | 1, 8 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1523 ∃wex 1744 Ⅎwnf 1748 ∈ wcel 2030 Vcvv 3231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-12 2087 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-v 3233 |
This theorem is referenced by: vtoclg 3297 ceqsexg 3365 mob 3421 opeliunxp2 5293 fvopab5 6349 opeliunxp2f 7381 cnextfvval 21916 dvfsumlem2 23835 dvfsumlem4 23837 bnj981 31146 dmrelrnrel 39733 fmul01 40130 fmuldfeq 40133 fmul01lt1lem1 40134 cncfiooicclem1 40424 stoweidlem3 40538 stoweidlem26 40561 stoweidlem31 40566 stoweidlem43 40578 stoweidlem51 40586 fourierdlem86 40727 fourierdlem89 40730 fourierdlem91 40732 |
Copyright terms: Public domain | W3C validator |