Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtoclegft Structured version   Visualization version   GIF version

Theorem vtoclegft 3431
 Description: Implicit substitution of a class for a setvar variable. (Closed theorem version of vtoclef 3432.) (Contributed by NM, 7-Nov-2005.) (Revised by Mario Carneiro, 11-Oct-2016.)
Assertion
Ref Expression
vtoclegft ((𝐴𝐵 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴𝜑)) → 𝜑)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem vtoclegft
StepHypRef Expression
1 elisset 3367 . . . 4 (𝐴𝐵 → ∃𝑥 𝑥 = 𝐴)
2 exim 1909 . . . 4 (∀𝑥(𝑥 = 𝐴𝜑) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥𝜑))
31, 2mpan9 496 . . 3 ((𝐴𝐵 ∧ ∀𝑥(𝑥 = 𝐴𝜑)) → ∃𝑥𝜑)
433adant2 1125 . 2 ((𝐴𝐵 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴𝜑)) → ∃𝑥𝜑)
5 19.9t 2227 . . 3 (Ⅎ𝑥𝜑 → (∃𝑥𝜑𝜑))
653ad2ant2 1128 . 2 ((𝐴𝐵 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴𝜑)) → (∃𝑥𝜑𝜑))
74, 6mpbid 222 1 ((𝐴𝐵 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴𝜑)) → 𝜑)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ w3a 1071  ∀wal 1629   = wceq 1631  ∃wex 1852  Ⅎwnf 1856   ∈ wcel 2145 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-12 2203  ax-ext 2751 This theorem depends on definitions:  df-bi 197  df-an 383  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-v 3353 This theorem is referenced by:  vtoclefex  33518
 Copyright terms: Public domain W3C validator