MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtocleg Structured version   Visualization version   GIF version

Theorem vtocleg 3310
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 21-Jun-1993.)
Hypothesis
Ref Expression
vtocleg.1 (𝑥 = 𝐴𝜑)
Assertion
Ref Expression
vtocleg (𝐴𝑉𝜑)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem vtocleg
StepHypRef Expression
1 elisset 3246 . 2 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
2 vtocleg.1 . . 3 (𝑥 = 𝐴𝜑)
32exlimiv 1898 . 2 (∃𝑥 𝑥 = 𝐴𝜑)
41, 3syl 17 1 (𝐴𝑉𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1523  wex 1744  wcel 2030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-12 2087  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-an 385  df-tru 1526  df-ex 1745  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-v 3233
This theorem is referenced by:  vtocle  3313  spsbc  3481  prex  4939  avril1  27449  finxpreclem6  33363  frege58c  38532
  Copyright terms: Public domain W3C validator