![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtoclbg | Structured version Visualization version GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
vtoclbg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
vtoclbg.2 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) |
vtoclbg.3 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
vtoclbg | ⊢ (𝐴 ∈ 𝑉 → (𝜒 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtoclbg.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
2 | vtoclbg.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) | |
3 | 1, 2 | bibi12d 334 | . 2 ⊢ (𝑥 = 𝐴 → ((𝜑 ↔ 𝜓) ↔ (𝜒 ↔ 𝜃))) |
4 | vtoclbg.3 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
5 | 3, 4 | vtoclg 3297 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜒 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1523 ∈ wcel 2030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-12 2087 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-v 3233 |
This theorem is referenced by: alexeqg 3363 pm13.183 3376 sbc8g 3476 sbc2or 3477 sbcco 3491 sbc5 3493 sbcie2g 3502 eqsbc3 3508 sbcng 3509 sbcimg 3510 sbcan 3511 sbcor 3512 sbcbig 3513 sbcal 3518 sbcex2 3519 sbcel1v 3528 sbcreu 3548 csbiebg 3589 sbcel12 4016 sbceqg 4017 elpwg 4199 snssgOLD 4349 preq12bg 4417 elintgOLD 4516 elintrabg 4521 sbcbr123 4739 opelresgOLD 5440 inisegn0 5532 funfvima3 6535 elixpsn 7989 ixpsnf1o 7990 domeng 8011 1sdom 8204 rankcf 9637 eldm3 31777 br1steqgOLD 31798 br2ndeqgOLD 31799 elima4 31803 brsset 32121 brbigcup 32130 elfix2 32136 elfunsg 32148 elsingles 32150 funpartlem 32174 ellines 32384 elhf2g 32408 cover2g 33639 sbcrexgOLD 37666 sbcangOLD 39056 sbcorgOLD 39057 sbcalgOLD 39069 sbcexgOLD 39070 sbcel12gOLD 39071 sbcel1gvOLD 39408 |
Copyright terms: Public domain | W3C validator |