![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtoclb | Structured version Visualization version GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 23-Dec-1993.) |
Ref | Expression |
---|---|
vtoclb.1 | ⊢ 𝐴 ∈ V |
vtoclb.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
vtoclb.3 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) |
vtoclb.4 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
vtoclb | ⊢ (𝜒 ↔ 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtoclb.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | vtoclb.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
3 | vtoclb.3 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) | |
4 | 2, 3 | bibi12d 334 | . 2 ⊢ (𝑥 = 𝐴 → ((𝜑 ↔ 𝜓) ↔ (𝜒 ↔ 𝜃))) |
5 | vtoclb.4 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
6 | 1, 4, 5 | vtocl 3290 | 1 ⊢ (𝜒 ↔ 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1523 ∈ wcel 2030 Vcvv 3231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-12 2087 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-an 385 df-tru 1526 df-ex 1745 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-v 3233 |
This theorem is referenced by: sbss 4117 bnj609 31113 |
Copyright terms: Public domain | W3C validator |