MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vsfval Structured version   Visualization version   GIF version

Theorem vsfval 27768
Description: Value of the function for the vector subtraction operation on a normed complex vector space. (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 27-Dec-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
vsfval.2 𝐺 = ( +𝑣𝑈)
vsfval.3 𝑀 = ( −𝑣𝑈)
Assertion
Ref Expression
vsfval 𝑀 = ( /𝑔𝐺)

Proof of Theorem vsfval
Dummy variables 𝑥 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-vs 27734 . . . . 5 𝑣 = ( /𝑔 ∘ +𝑣 )
21fveq1i 6341 . . . 4 ( −𝑣𝑈) = (( /𝑔 ∘ +𝑣 )‘𝑈)
3 fo1st 7341 . . . . . . . 8 1st :V–onto→V
4 fof 6264 . . . . . . . 8 (1st :V–onto→V → 1st :V⟶V)
53, 4ax-mp 5 . . . . . . 7 1st :V⟶V
6 fco 6207 . . . . . . 7 ((1st :V⟶V ∧ 1st :V⟶V) → (1st ∘ 1st ):V⟶V)
75, 5, 6mp2an 710 . . . . . 6 (1st ∘ 1st ):V⟶V
8 df-va 27730 . . . . . . 7 +𝑣 = (1st ∘ 1st )
98feq1i 6185 . . . . . 6 ( +𝑣 :V⟶V ↔ (1st ∘ 1st ):V⟶V)
107, 9mpbir 221 . . . . 5 +𝑣 :V⟶V
11 fvco3 6425 . . . . 5 (( +𝑣 :V⟶V ∧ 𝑈 ∈ V) → (( /𝑔 ∘ +𝑣 )‘𝑈) = ( /𝑔 ‘( +𝑣𝑈)))
1210, 11mpan 708 . . . 4 (𝑈 ∈ V → (( /𝑔 ∘ +𝑣 )‘𝑈) = ( /𝑔 ‘( +𝑣𝑈)))
132, 12syl5eq 2794 . . 3 (𝑈 ∈ V → ( −𝑣𝑈) = ( /𝑔 ‘( +𝑣𝑈)))
14 0ngrp 27645 . . . . . 6 ¬ ∅ ∈ GrpOp
15 vex 3331 . . . . . . . . . 10 𝑔 ∈ V
1615rnex 7253 . . . . . . . . 9 ran 𝑔 ∈ V
1716, 16mpt2ex 7403 . . . . . . . 8 (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦))) ∈ V
18 df-gdiv 27630 . . . . . . . 8 /𝑔 = (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦))))
1917, 18dmmpti 6172 . . . . . . 7 dom /𝑔 = GrpOp
2019eleq2i 2819 . . . . . 6 (∅ ∈ dom /𝑔 ↔ ∅ ∈ GrpOp)
2114, 20mtbir 312 . . . . 5 ¬ ∅ ∈ dom /𝑔
22 ndmfv 6367 . . . . 5 (¬ ∅ ∈ dom /𝑔 → ( /𝑔 ‘∅) = ∅)
2321, 22mp1i 13 . . . 4 𝑈 ∈ V → ( /𝑔 ‘∅) = ∅)
24 fvprc 6334 . . . . 5 𝑈 ∈ V → ( +𝑣𝑈) = ∅)
2524fveq2d 6344 . . . 4 𝑈 ∈ V → ( /𝑔 ‘( +𝑣𝑈)) = ( /𝑔 ‘∅))
26 fvprc 6334 . . . 4 𝑈 ∈ V → ( −𝑣𝑈) = ∅)
2723, 25, 263eqtr4rd 2793 . . 3 𝑈 ∈ V → ( −𝑣𝑈) = ( /𝑔 ‘( +𝑣𝑈)))
2813, 27pm2.61i 176 . 2 ( −𝑣𝑈) = ( /𝑔 ‘( +𝑣𝑈))
29 vsfval.3 . 2 𝑀 = ( −𝑣𝑈)
30 vsfval.2 . . 3 𝐺 = ( +𝑣𝑈)
3130fveq2i 6343 . 2 ( /𝑔𝐺) = ( /𝑔 ‘( +𝑣𝑈))
3228, 29, 313eqtr4i 2780 1 𝑀 = ( /𝑔𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1620  wcel 2127  Vcvv 3328  c0 4046  dom cdm 5254  ran crn 5255  ccom 5258  wf 6033  ontowfo 6035  cfv 6037  (class class class)co 6801  cmpt2 6803  1st c1st 7319  GrpOpcgr 27623  invcgn 27625   /𝑔 cgs 27626   +𝑣 cpv 27720  𝑣 cnsb 27724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-ral 3043  df-rex 3044  df-reu 3045  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-op 4316  df-uni 4577  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-id 5162  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-1st 7321  df-2nd 7322  df-grpo 27627  df-gdiv 27630  df-va 27730  df-vs 27734
This theorem is referenced by:  nvm  27776  nvmfval  27779  nvnnncan1  27782  nvaddsub  27790
  Copyright terms: Public domain W3C validator