![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vsfval | Structured version Visualization version GIF version |
Description: Value of the function for the vector subtraction operation on a normed complex vector space. (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 27-Dec-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
vsfval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
vsfval.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
Ref | Expression |
---|---|
vsfval | ⊢ 𝑀 = ( /𝑔 ‘𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-vs 27734 | . . . . 5 ⊢ −𝑣 = ( /𝑔 ∘ +𝑣 ) | |
2 | 1 | fveq1i 6341 | . . . 4 ⊢ ( −𝑣 ‘𝑈) = (( /𝑔 ∘ +𝑣 )‘𝑈) |
3 | fo1st 7341 | . . . . . . . 8 ⊢ 1st :V–onto→V | |
4 | fof 6264 | . . . . . . . 8 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ 1st :V⟶V |
6 | fco 6207 | . . . . . . 7 ⊢ ((1st :V⟶V ∧ 1st :V⟶V) → (1st ∘ 1st ):V⟶V) | |
7 | 5, 5, 6 | mp2an 710 | . . . . . 6 ⊢ (1st ∘ 1st ):V⟶V |
8 | df-va 27730 | . . . . . . 7 ⊢ +𝑣 = (1st ∘ 1st ) | |
9 | 8 | feq1i 6185 | . . . . . 6 ⊢ ( +𝑣 :V⟶V ↔ (1st ∘ 1st ):V⟶V) |
10 | 7, 9 | mpbir 221 | . . . . 5 ⊢ +𝑣 :V⟶V |
11 | fvco3 6425 | . . . . 5 ⊢ (( +𝑣 :V⟶V ∧ 𝑈 ∈ V) → (( /𝑔 ∘ +𝑣 )‘𝑈) = ( /𝑔 ‘( +𝑣 ‘𝑈))) | |
12 | 10, 11 | mpan 708 | . . . 4 ⊢ (𝑈 ∈ V → (( /𝑔 ∘ +𝑣 )‘𝑈) = ( /𝑔 ‘( +𝑣 ‘𝑈))) |
13 | 2, 12 | syl5eq 2794 | . . 3 ⊢ (𝑈 ∈ V → ( −𝑣 ‘𝑈) = ( /𝑔 ‘( +𝑣 ‘𝑈))) |
14 | 0ngrp 27645 | . . . . . 6 ⊢ ¬ ∅ ∈ GrpOp | |
15 | vex 3331 | . . . . . . . . . 10 ⊢ 𝑔 ∈ V | |
16 | 15 | rnex 7253 | . . . . . . . . 9 ⊢ ran 𝑔 ∈ V |
17 | 16, 16 | mpt2ex 7403 | . . . . . . . 8 ⊢ (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦))) ∈ V |
18 | df-gdiv 27630 | . . . . . . . 8 ⊢ /𝑔 = (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦)))) | |
19 | 17, 18 | dmmpti 6172 | . . . . . . 7 ⊢ dom /𝑔 = GrpOp |
20 | 19 | eleq2i 2819 | . . . . . 6 ⊢ (∅ ∈ dom /𝑔 ↔ ∅ ∈ GrpOp) |
21 | 14, 20 | mtbir 312 | . . . . 5 ⊢ ¬ ∅ ∈ dom /𝑔 |
22 | ndmfv 6367 | . . . . 5 ⊢ (¬ ∅ ∈ dom /𝑔 → ( /𝑔 ‘∅) = ∅) | |
23 | 21, 22 | mp1i 13 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ( /𝑔 ‘∅) = ∅) |
24 | fvprc 6334 | . . . . 5 ⊢ (¬ 𝑈 ∈ V → ( +𝑣 ‘𝑈) = ∅) | |
25 | 24 | fveq2d 6344 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ( /𝑔 ‘( +𝑣 ‘𝑈)) = ( /𝑔 ‘∅)) |
26 | fvprc 6334 | . . . 4 ⊢ (¬ 𝑈 ∈ V → ( −𝑣 ‘𝑈) = ∅) | |
27 | 23, 25, 26 | 3eqtr4rd 2793 | . . 3 ⊢ (¬ 𝑈 ∈ V → ( −𝑣 ‘𝑈) = ( /𝑔 ‘( +𝑣 ‘𝑈))) |
28 | 13, 27 | pm2.61i 176 | . 2 ⊢ ( −𝑣 ‘𝑈) = ( /𝑔 ‘( +𝑣 ‘𝑈)) |
29 | vsfval.3 | . 2 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
30 | vsfval.2 | . . 3 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
31 | 30 | fveq2i 6343 | . 2 ⊢ ( /𝑔 ‘𝐺) = ( /𝑔 ‘( +𝑣 ‘𝑈)) |
32 | 28, 29, 31 | 3eqtr4i 2780 | 1 ⊢ 𝑀 = ( /𝑔 ‘𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1620 ∈ wcel 2127 Vcvv 3328 ∅c0 4046 dom cdm 5254 ran crn 5255 ∘ ccom 5258 ⟶wf 6033 –onto→wfo 6035 ‘cfv 6037 (class class class)co 6801 ↦ cmpt2 6803 1st c1st 7319 GrpOpcgr 27623 invcgn 27625 /𝑔 cgs 27626 +𝑣 cpv 27720 −𝑣 cnsb 27724 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-rep 4911 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-ral 3043 df-rex 3044 df-reu 3045 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-op 4316 df-uni 4577 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-id 5162 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-1st 7321 df-2nd 7322 df-grpo 27627 df-gdiv 27630 df-va 27730 df-vs 27734 |
This theorem is referenced by: nvm 27776 nvmfval 27779 nvnnncan1 27782 nvaddsub 27790 |
Copyright terms: Public domain | W3C validator |