Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  vrgpval Structured version   Visualization version   GIF version

Theorem vrgpval 18380
 Description: The value of the generating elements of a free group. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
vrgpfval.r = ( ~FG𝐼)
vrgpfval.u 𝑈 = (varFGrp𝐼)
Assertion
Ref Expression
vrgpval ((𝐼𝑉𝐴𝐼) → (𝑈𝐴) = [⟨“⟨𝐴, ∅⟩”⟩] )

Proof of Theorem vrgpval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 vrgpfval.r . . . 4 = ( ~FG𝐼)
2 vrgpfval.u . . . 4 𝑈 = (varFGrp𝐼)
31, 2vrgpfval 18379 . . 3 (𝐼𝑉𝑈 = (𝑗𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] ))
43fveq1d 6354 . 2 (𝐼𝑉 → (𝑈𝐴) = ((𝑗𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] )‘𝐴))
5 opeq1 4553 . . . . 5 (𝑗 = 𝐴 → ⟨𝑗, ∅⟩ = ⟨𝐴, ∅⟩)
65s1eqd 13571 . . . 4 (𝑗 = 𝐴 → ⟨“⟨𝑗, ∅⟩”⟩ = ⟨“⟨𝐴, ∅⟩”⟩)
76eceq1d 7950 . . 3 (𝑗 = 𝐴 → [⟨“⟨𝑗, ∅⟩”⟩] = [⟨“⟨𝐴, ∅⟩”⟩] )
8 eqid 2760 . . 3 (𝑗𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] ) = (𝑗𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] )
9 fvex 6362 . . . . 5 ( ~FG𝐼) ∈ V
101, 9eqeltri 2835 . . . 4 ∈ V
11 ecexg 7915 . . . 4 ( ∈ V → [⟨“⟨𝐴, ∅⟩”⟩] ∈ V)
1210, 11ax-mp 5 . . 3 [⟨“⟨𝐴, ∅⟩”⟩] ∈ V
137, 8, 12fvmpt 6444 . 2 (𝐴𝐼 → ((𝑗𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] )‘𝐴) = [⟨“⟨𝐴, ∅⟩”⟩] )
144, 13sylan9eq 2814 1 ((𝐼𝑉𝐴𝐼) → (𝑈𝐴) = [⟨“⟨𝐴, ∅⟩”⟩] )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2139  Vcvv 3340  ∅c0 4058  ⟨cop 4327   ↦ cmpt 4881  ‘cfv 6049  [cec 7909  ⟨“cs1 13480   ~FG cefg 18319  varFGrpcvrgp 18321 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pr 5055  ax-un 7114 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ec 7913  df-s1 13488  df-vrgp 18324 This theorem is referenced by:  vrgpinv  18382  frgpup2  18389  frgpup3lem  18390  frgpnabllem1  18476
 Copyright terms: Public domain W3C validator