![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vrgpinv | Structured version Visualization version GIF version |
Description: The inverse of a generating element is represented by 〈𝐴, 1〉 instead of 〈𝐴, 0〉. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
vrgpfval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
vrgpfval.u | ⊢ 𝑈 = (varFGrp‘𝐼) |
vrgpf.m | ⊢ 𝐺 = (freeGrp‘𝐼) |
vrgpinv.n | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
vrgpinv | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑁‘(𝑈‘𝐴)) = [〈“〈𝐴, 1𝑜〉”〉] ∼ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vrgpfval.r | . . . 4 ⊢ ∼ = ( ~FG ‘𝐼) | |
2 | vrgpfval.u | . . . 4 ⊢ 𝑈 = (varFGrp‘𝐼) | |
3 | 1, 2 | vrgpval 18387 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑈‘𝐴) = [〈“〈𝐴, ∅〉”〉] ∼ ) |
4 | 3 | fveq2d 6336 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑁‘(𝑈‘𝐴)) = (𝑁‘[〈“〈𝐴, ∅〉”〉] ∼ )) |
5 | simpr 471 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → 𝐴 ∈ 𝐼) | |
6 | 0ex 4924 | . . . . . . . 8 ⊢ ∅ ∈ V | |
7 | 6 | prid1 4433 | . . . . . . 7 ⊢ ∅ ∈ {∅, 1𝑜} |
8 | df2o3 7727 | . . . . . . 7 ⊢ 2𝑜 = {∅, 1𝑜} | |
9 | 7, 8 | eleqtrri 2849 | . . . . . 6 ⊢ ∅ ∈ 2𝑜 |
10 | opelxpi 5288 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐼 ∧ ∅ ∈ 2𝑜) → 〈𝐴, ∅〉 ∈ (𝐼 × 2𝑜)) | |
11 | 5, 9, 10 | sylancl 574 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → 〈𝐴, ∅〉 ∈ (𝐼 × 2𝑜)) |
12 | 11 | s1cld 13583 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → 〈“〈𝐴, ∅〉”〉 ∈ Word (𝐼 × 2𝑜)) |
13 | simpl 468 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → 𝐼 ∈ 𝑉) | |
14 | 2on 7722 | . . . . . 6 ⊢ 2𝑜 ∈ On | |
15 | xpexg 7107 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ 2𝑜 ∈ On) → (𝐼 × 2𝑜) ∈ V) | |
16 | 13, 14, 15 | sylancl 574 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝐼 × 2𝑜) ∈ V) |
17 | wrdexg 13511 | . . . . 5 ⊢ ((𝐼 × 2𝑜) ∈ V → Word (𝐼 × 2𝑜) ∈ V) | |
18 | fvi 6397 | . . . . 5 ⊢ (Word (𝐼 × 2𝑜) ∈ V → ( I ‘Word (𝐼 × 2𝑜)) = Word (𝐼 × 2𝑜)) | |
19 | 16, 17, 18 | 3syl 18 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → ( I ‘Word (𝐼 × 2𝑜)) = Word (𝐼 × 2𝑜)) |
20 | 12, 19 | eleqtrrd 2853 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → 〈“〈𝐴, ∅〉”〉 ∈ ( I ‘Word (𝐼 × 2𝑜))) |
21 | eqid 2771 | . . . 4 ⊢ ( I ‘Word (𝐼 × 2𝑜)) = ( I ‘Word (𝐼 × 2𝑜)) | |
22 | vrgpf.m | . . . 4 ⊢ 𝐺 = (freeGrp‘𝐼) | |
23 | vrgpinv.n | . . . 4 ⊢ 𝑁 = (invg‘𝐺) | |
24 | eqid 2771 | . . . 4 ⊢ (𝑥 ∈ 𝐼, 𝑦 ∈ 2𝑜 ↦ 〈𝑥, (1𝑜 ∖ 𝑦)〉) = (𝑥 ∈ 𝐼, 𝑦 ∈ 2𝑜 ↦ 〈𝑥, (1𝑜 ∖ 𝑦)〉) | |
25 | 21, 22, 1, 23, 24 | frgpinv 18384 | . . 3 ⊢ (〈“〈𝐴, ∅〉”〉 ∈ ( I ‘Word (𝐼 × 2𝑜)) → (𝑁‘[〈“〈𝐴, ∅〉”〉] ∼ ) = [((𝑥 ∈ 𝐼, 𝑦 ∈ 2𝑜 ↦ 〈𝑥, (1𝑜 ∖ 𝑦)〉) ∘ (reverse‘〈“〈𝐴, ∅〉”〉))] ∼ ) |
26 | 20, 25 | syl 17 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑁‘[〈“〈𝐴, ∅〉”〉] ∼ ) = [((𝑥 ∈ 𝐼, 𝑦 ∈ 2𝑜 ↦ 〈𝑥, (1𝑜 ∖ 𝑦)〉) ∘ (reverse‘〈“〈𝐴, ∅〉”〉))] ∼ ) |
27 | revs1 13723 | . . . . . 6 ⊢ (reverse‘〈“〈𝐴, ∅〉”〉) = 〈“〈𝐴, ∅〉”〉 | |
28 | 27 | a1i 11 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (reverse‘〈“〈𝐴, ∅〉”〉) = 〈“〈𝐴, ∅〉”〉) |
29 | 28 | coeq2d 5423 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → ((𝑥 ∈ 𝐼, 𝑦 ∈ 2𝑜 ↦ 〈𝑥, (1𝑜 ∖ 𝑦)〉) ∘ (reverse‘〈“〈𝐴, ∅〉”〉)) = ((𝑥 ∈ 𝐼, 𝑦 ∈ 2𝑜 ↦ 〈𝑥, (1𝑜 ∖ 𝑦)〉) ∘ 〈“〈𝐴, ∅〉”〉)) |
30 | 24 | efgmf 18333 | . . . . 5 ⊢ (𝑥 ∈ 𝐼, 𝑦 ∈ 2𝑜 ↦ 〈𝑥, (1𝑜 ∖ 𝑦)〉):(𝐼 × 2𝑜)⟶(𝐼 × 2𝑜) |
31 | s1co 13788 | . . . . 5 ⊢ ((〈𝐴, ∅〉 ∈ (𝐼 × 2𝑜) ∧ (𝑥 ∈ 𝐼, 𝑦 ∈ 2𝑜 ↦ 〈𝑥, (1𝑜 ∖ 𝑦)〉):(𝐼 × 2𝑜)⟶(𝐼 × 2𝑜)) → ((𝑥 ∈ 𝐼, 𝑦 ∈ 2𝑜 ↦ 〈𝑥, (1𝑜 ∖ 𝑦)〉) ∘ 〈“〈𝐴, ∅〉”〉) = 〈“((𝑥 ∈ 𝐼, 𝑦 ∈ 2𝑜 ↦ 〈𝑥, (1𝑜 ∖ 𝑦)〉)‘〈𝐴, ∅〉)”〉) | |
32 | 11, 30, 31 | sylancl 574 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → ((𝑥 ∈ 𝐼, 𝑦 ∈ 2𝑜 ↦ 〈𝑥, (1𝑜 ∖ 𝑦)〉) ∘ 〈“〈𝐴, ∅〉”〉) = 〈“((𝑥 ∈ 𝐼, 𝑦 ∈ 2𝑜 ↦ 〈𝑥, (1𝑜 ∖ 𝑦)〉)‘〈𝐴, ∅〉)”〉) |
33 | 24 | efgmval 18332 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝐼 ∧ ∅ ∈ 2𝑜) → (𝐴(𝑥 ∈ 𝐼, 𝑦 ∈ 2𝑜 ↦ 〈𝑥, (1𝑜 ∖ 𝑦)〉)∅) = 〈𝐴, (1𝑜 ∖ ∅)〉) |
34 | 5, 9, 33 | sylancl 574 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝐴(𝑥 ∈ 𝐼, 𝑦 ∈ 2𝑜 ↦ 〈𝑥, (1𝑜 ∖ 𝑦)〉)∅) = 〈𝐴, (1𝑜 ∖ ∅)〉) |
35 | df-ov 6796 | . . . . . 6 ⊢ (𝐴(𝑥 ∈ 𝐼, 𝑦 ∈ 2𝑜 ↦ 〈𝑥, (1𝑜 ∖ 𝑦)〉)∅) = ((𝑥 ∈ 𝐼, 𝑦 ∈ 2𝑜 ↦ 〈𝑥, (1𝑜 ∖ 𝑦)〉)‘〈𝐴, ∅〉) | |
36 | dif0 4097 | . . . . . . 7 ⊢ (1𝑜 ∖ ∅) = 1𝑜 | |
37 | 36 | opeq2i 4543 | . . . . . 6 ⊢ 〈𝐴, (1𝑜 ∖ ∅)〉 = 〈𝐴, 1𝑜〉 |
38 | 34, 35, 37 | 3eqtr3g 2828 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → ((𝑥 ∈ 𝐼, 𝑦 ∈ 2𝑜 ↦ 〈𝑥, (1𝑜 ∖ 𝑦)〉)‘〈𝐴, ∅〉) = 〈𝐴, 1𝑜〉) |
39 | 38 | s1eqd 13581 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → 〈“((𝑥 ∈ 𝐼, 𝑦 ∈ 2𝑜 ↦ 〈𝑥, (1𝑜 ∖ 𝑦)〉)‘〈𝐴, ∅〉)”〉 = 〈“〈𝐴, 1𝑜〉”〉) |
40 | 29, 32, 39 | 3eqtrd 2809 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → ((𝑥 ∈ 𝐼, 𝑦 ∈ 2𝑜 ↦ 〈𝑥, (1𝑜 ∖ 𝑦)〉) ∘ (reverse‘〈“〈𝐴, ∅〉”〉)) = 〈“〈𝐴, 1𝑜〉”〉) |
41 | 40 | eceq1d 7935 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → [((𝑥 ∈ 𝐼, 𝑦 ∈ 2𝑜 ↦ 〈𝑥, (1𝑜 ∖ 𝑦)〉) ∘ (reverse‘〈“〈𝐴, ∅〉”〉))] ∼ = [〈“〈𝐴, 1𝑜〉”〉] ∼ ) |
42 | 4, 26, 41 | 3eqtrd 2809 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑁‘(𝑈‘𝐴)) = [〈“〈𝐴, 1𝑜〉”〉] ∼ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 Vcvv 3351 ∖ cdif 3720 ∅c0 4063 {cpr 4318 〈cop 4322 I cid 5156 × cxp 5247 ∘ ccom 5253 Oncon0 5866 ⟶wf 6027 ‘cfv 6031 (class class class)co 6793 ↦ cmpt2 6795 1𝑜c1o 7706 2𝑜c2o 7707 [cec 7894 Word cword 13487 〈“cs1 13490 reversecreverse 13493 invgcminusg 17631 ~FG cefg 18326 freeGrpcfrgp 18327 varFGrpcvrgp 18328 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-ot 4325 df-uni 4575 df-int 4612 df-iun 4656 df-iin 4657 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-2o 7714 df-oadd 7717 df-er 7896 df-ec 7898 df-qs 7902 df-map 8011 df-pm 8012 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-sup 8504 df-inf 8505 df-card 8965 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-7 11286 df-8 11287 df-9 11288 df-n0 11495 df-xnn0 11566 df-z 11580 df-dec 11696 df-uz 11889 df-fz 12534 df-fzo 12674 df-hash 13322 df-word 13495 df-lsw 13496 df-concat 13497 df-s1 13498 df-substr 13499 df-splice 13500 df-reverse 13501 df-s2 13802 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-plusg 16162 df-mulr 16163 df-sca 16165 df-vsca 16166 df-ip 16167 df-tset 16168 df-ple 16169 df-ds 16172 df-0g 16310 df-imas 16376 df-qus 16377 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-frmd 17594 df-grp 17633 df-minusg 17634 df-efg 18329 df-frgp 18330 df-vrgp 18331 |
This theorem is referenced by: frgpup3lem 18397 |
Copyright terms: Public domain | W3C validator |